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Fig. S1  Time series of plankton guilds (nodes in the network). Abundances of He-Pr are in indv./m2

while Ro-Mi and Cy-Cr2 are in indv./L. He-Pr has been collected over the whole water column, whereas

Ro-Mi and Cy-Cr2 were sampled in the photosynthetic zone (Tab. S1). Lake BAL, BIE, BRZ, MUR,

NEU, THU and ZHR did not consider small grazers (Ro, Ci) during their sampling.
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Fig. S2 Node richness is constant in all lakes. Node richness is calculated as the percentage of nodes

with an abundance >0 during the 60-month moving window used for the ccm analysis. Points show single

measurements in time.
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Fig. S3 Sensitivity analysis of cross-mapping window size (48, 60, and 72 months). [a] connectance

(%) and [b] link strength (estimated from the predictive skill rho, Pearson’s correlation between

observations and predictions, corrected for seasonality). The main trends are robust to the choice of size

of the cross-mapping window.
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Fig. S4: Lake-specific responses of network properties to changes in water temperature and

phosphate levels for the ten lakes. Network properties were modeled using s-maps based on water

temperature, dissolved phosphate and a lake’s depth and volume. We then predicted them over a gradient

of phosphate (x-axis1) and temperature (x-axis2). Network properties are plotted on the z-axis. Colors

represent the different lakes.
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Fig. S5 S-map results for predicting network properties using water temperature and phosphate

levels in the ten lakes. Combined effects of average water-column phosphate levels and temperature on

realized connectance, average interactions strengths, and trophic controls: color-coded contour plots

depict the s-map model inferred relationships and their confidence (standard deviation of prediction),

which emerge from predicting network properties (z-axis) over varying levels of the chosen pair of

explanatory variables (water temperature and phosphate), across the entire dataset while keeping lake

depth and volume constant (Methods). Water temperature (y-axis), phosphate levels (x-axis), and
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network properties (legends) ranged between the minimum and maximum observed values across all

lakes. Dots depict the start/end of the re-oligotrophication and net-warming phase. Trajectories show the

direction of time. The displayed year is the middle point of a 5-year time window.
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Fig. S6 Spearman-rank correlation between top-down and bottom-up control in the ten lakes. [a]
realized links and [b] strength. Seven out of ten lakes display a positive significant correlation between
the realized number of top-down and bottom-up links. Three out of ten lakes display a significant
correlation between the strength of top-down and bottom-up links, whereas this correlation is positive in
ZHR and BAL, it is negative in THU.
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Fig. S7 Temporal changes in realized connectance (%) and strength of trophic, non-trophic and

hybrid interactions. All lines are drawn based on the central point of a moving window of 60 months,

used for causality detection via CCM.
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Fig. S8 Sensitivity analysis for connectance and interaction strength to the inclusion/exclusion of
small grazers. To ensure that our results regarding connectance and interaction strength are comparable
across lakes (some sampled small grazers, rotifers and ciliates, guilds Ro and Ci, while some others
didn’t), we ran the analyses for the lakes we had abundances for Ro and Ci with and without them. The
major trends in connectance and interaction strength in the lakes BAL, GRE, HAL and SEM still hold
when excluding ciliates and rotifers from the analysis.

27



Fig. S9 Estimated connectance and interaction strength with and without winsorizing taxa
abundance data. R and p-values are calculated using linear (Pearson’s) correlation. Winsorizing taxa
abundance data (raw data, before sorting into guilds) does not majorly alter [a] connectance nor [b]
interaction strength.
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Fig. S10 Availability of temperature and phosphate concentration data for model predictions. [a]
historical trajectories (values for water temperature and phosphate concentration) for each lake. Data were
averaged within 60-month moving windows to match the time scale of the network properties. [b]
Distribution of environmental data before averaging within 60-month moving windows.
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Tab. S1 Lake metadata. Time points (n) include missing values as well. Taxa refer to the number of
distinct taxonomic units sorted into guilds. (*) means variable sampling depths within this range over the
years (Methods). Note: small zooplankton was not sampled in BIE, BRZ, MUR, NEU, THU, ZHR.

Baldegg Biel Brienz Greifen Hallwil Murten Neuenburg Sempach Thun Zurich

abb. BAL BIE BRZ GRE HAL MUR NEU SEM THU ZHR

volume (km3) 0.173 1.12 5.17 0.148 0.285 0.55 13.77 0.66 6.5 3.9

Depth
sampling site
(m) 67 74 260 30 45 45 152 87 217 135

Time span 1986-2009 1994-2022 1994-2022 1985-2020 1985-2020 1999-2021 1999-2019 1988-2009 1996-2022 1977-2020

Missing
values 6 6 2 24 19 4 18 6 2 5

Time points
(n) 288 337 331 430 427 276 252 264 314 528

Phytoplankton

Taxa (n) 274 332 182 334 300 303 195 263 215 293

Records (n) 11385 20220 11099 20464 14390 12672 9718 11341 15488 35323

Depth range 0-15 m 0-25 m* 0-40 m* 0-20 m 0-13 m 0-15 m* 0-40 m* 0-15 m 0-40 m* 0-135 m

Winsorized
data points
(%) 4.2 3.3 3 3.6 3.9 4 3.5 4 2.9 2.7

Small
zooplankton

Taxa (n) 53 NA NA 58 57 NA NA 49 NA NA

Records (n) 4348 NA NA 6167 5244 NA NA 3992 NA NA

Depth range 0-15 m NA NA 0-20 m 0-13 m NA NA 0-15 m NA NA

Winsorized
records (%) 2.4 NA NA 2.1 2.2 NA NA 2 NA NA

Large
zooplankton

Taxa (n) 61 77 49 50 56 50 48 58 53 98

Records (n) 7939 9740 5086 6538 8948 5340 5591 7970 5908 13727

Depth range 0-65 m 0-70 m 0-100 m 0-30 m 0-43 m 0-40 m 0-140 m 0-85 m 0_100 m 0-135 m

Winsorized
data points
(%) 2.7 2.2 1.8 2.2 2.5 2.3 2.3 2.7 2 2.5

Chemistry

Depth range 0-65 m 0-74 m 0-260 m 0-30 m 0-45 m 0-45 m 0-152 m 0-85 m 0-217 m 0-135 m

P-PO4
interpolated
values 10 268 268 28 224 120 131 8 258 7

T interpolated
values 8 7 1 29 20 4 19 9 3 7

P-PO4 level
(ug/L)
1985-2020 0.056 NA NA 0.073 0.048 NA NA 0.039 NA 0.028

ΔT(°C)
2005-2009 and
2016-2020 1.66 0.68 0.35 0.51 0.91 0.88 0.75 0.8 0.41 0.97
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Tab. S2 S-map prediction accuracy. AL: All the lakes were included to make the predictions. LL: The
lake of interest was left out to make the predictions. OL: Only the lake of interest was used to make the
predictions. Rho is considered the predictive skill (Pearson’s correlation between observations and
observations). The degree of nonlinearity is measured by the maximum Δrho: the difference in Pearson’s
correlation between the best nonlinear model (when the locality parameter [Θ] in the S-maps is greater
than 0) and the global linear model (when Θ = 0)

Lake Baldegg Lake Biel Lake Brienz Lake Greifen Lake Hallwil

Approach

Rho
(best
theta)

Theta
(best)

Rho
(diff.)

Rho
(best
theta)

Theta
(best)

Rho
(diff.)

Rho
(best
theta)

Theta
(best)

Rho
(diff.)

Rho
(best
theta)

Theta
(best)

Rho
(diff.)

Rho
(best
theta)

Theta
(best)

Rho
(diff.)

Strength

AL 0.235 8 0.235 0.186 8 0.186 0.227 0 0.000 0.734 8 0.232 0.626 8 0.170

LL 0.096 6 0.096 0.000 0 0.000 0.332 0 0.000 0.551 0 0.000 0.630 8 0.163

OL 0.264 8 0.264 0.352 3 0.352 0.434 8 0.434 0.764 2 0.064 0.624 6 0.327

Connectance

AL 0.679 8 0.446 0.531 8 0.531 0.560 4 0.560 0.684 6 0.372 0.367 8 0.242

LL 0.410 1 0.013 0.000 2 0.000 0.645 3 0.189 0.791 1.5 0.469 0.210 0 0.000

OL 0.689 6 0.689 0.629 3 0.133 0.506 0.3 0.003 0.661 1.5 0.068 0.489 8 0.489

TD links

AL 0.198 0 0.000 0.138 8 0.138 0.398 6 0.398 0.668 6 0.668 0.505 8 0.218

LL 0.275 0 0.000 0.000 0.75 0.000 0.587 8 0.587 0.162 6 0.162 0.400 0 0.000

OL 0.433 8 0.342 0.354 3 0.191 0.395 0 0.000 0.656 1.5 0.073 0.642 8 0.490

BU links

AL 0.558 8 0.558 0.504 8 0.504 0.376 3 0.376 0.577 6 0.213 0.145 8 0.127

LL 0.138 0 0.000 0.000 6 0.000 0.551 2 0.025 0.674 2 0.217 0.138 4 0.112

OL 0.610 6 0.610 0.591 3 0.136 0.428 4 0.192 0.542 2 0.297 0.213 6 0.213

TD-BU links

AL 0.000 8 0.000 0.067 4 0.067 0.368 6 0.368 0.298 6 0.298 0.357 8 0.357

LL 0.000 3 0.000 0.146 8 0.146 0.597 6 0.584 0.000 8 0.000 0.000 0 0.000

OL 0.478 8 0.478 0.216 8 0.216 0.361 1.5 0.063 0.339 0 0.000 0.495 8 0.320

TD strength

AL 0.173 8 0.173 0.379 8 0.379 0.000 0 0.000 0.529 8 0.020 0.408 3 0.048

LL 0.247 8 0.247 0.000 0 0.000 0.020 8 0.020 0.636 0 0.000 0.477 4 0.087

OL 0.321 8 0.321 0.553 6 0.528 0.229 8 0.229 0.524 6 0.010 0.148 8 0.079

BU strength

AL 0.513 8 0.513 0.489 3 0.489 0.268 0.1 0.000 0.488 8 0.488 0.464 8 0.274

LL 0.083 8 0.083 0.483 1 0.483 0.413 0 0.000 0.457 8 0.457 0.390 3 0.171

OL 0.591 4 0.027 0.492 4 0.201 0.115 0 0.000 0.526 0.75 0.085 0.467 4 0.467

TD-BU
strength

AL 0.180 8 0.180 0.318 8 0.318 0.000 8 0.000 0.551 6 0.551 0.323 8 0.323

LL 0.376 0.1 0.016 0.134 3 0.134 0.000 8 0.000 0.674 8 0.674 0.310 1.5 0.310

OL 0.637 8 0.161 0.459 8 0.214 0.100 8 0.100 0.592 0.3 0.004 0.379 8 0.379
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Tab. S2: S-map prediction accuracy. (cont.)

Lake Murten Lake Neuchatel Lake Sempach Lake Thun Lake Zurich

Approach

Rho
(best
theta)

Theta
(best)

Rho
(diff.)

Rho
(best
theta)

Theta
(best)

Rho
(diff.)

Rho
(best
theta)

Theta
(best)

Rho
(diff.)

Rho
(best
theta)

Theta
(best)

Rho
(diff.)

Rho
(best
theta)

Theta
(best)

Rho
(diff.)

Strength

AL 0.000 0 0.000 0.099 6 0.044 0.478 6 0.238 0.211 0 0.000 0.669 8 0.374

LL 0.265 6 0.265 0.431 0 0.000 0.436 2 0.174 0.347 8 0.025 0.271 6 0.057

OL 0.143 8 0.143 0.169 0 0.000 0.428 8 0.428 0.247 0 0.000 0.656 3 0.624

Connectance

AL 0.000 8 0.000 0.000 8 0.000 0.011 8 0.011 0.634 8 0.634 0.868 8 0.868

LL 0.096 1 0.096 0.327 0.3 0.019 0.094 1.5 0.079 0.325 8 0.325 0.237 6 0.237

OL 0.403 8 0.403 0.014 4 0.014 0.259 8 0.259 0.631 1 0.060 0.910 8 0.688

TD links

AL 0.000 8 0.000 0.000 0.75 0.000 0.142 0 0.000 0.760 6 0.760 0.762 8 0.534

LL 0.000 0 0.000 0.162 8 0.162 0.226 0 0.000 0.710 8 0.710 0.381 6 0.381

OL 0.081 8 0.081 0.000 0 0.000 0.103 8 0.103 0.775 2 0.072 0.777 6 0.430

BU links

AL 0.142 8 0.142 0.148 8 0.148 0.209 0 0.000 0.554 8 0.527 0.698 8 0.698

LL 0.147 8 0.034 0.309 0.75 0.011 0.229 0.1 0.000 0.493 3 0.063 0.000 8 0.000

OL 0.308 8 0.308 0.261 4 0.261 0.000 8 0.000 0.638 6 0.166 0.752 6 0.752

TD-BU links

AL 0.000 8 0.000 0.014 8 0.014 0.000 3 0.000 0.557 8 0.557 0.478 8 0.405

LL 0.299 8 0.299 0.104 0 0.000 0.266 8 0.266 0.556 8 0.317 0.474 6 0.347

OL 0.011 8 0.011 0.000 0.5 0.000 0.064 8 0.064 0.618 1.5 0.179 0.503 6 0.110

TD strength

AL 0.179 0 0.000 0.200 8 0.200 0.119 8 0.062 0.655 8 0.429 0.424 8 0.424

LL 0.218 0 0.000 0.479 0 0.000 0.090 1 0.012 0.389 0 0.000 0.000 4 0.000

OL 0.335 8 0.335 0.316 4 0.156 0.102 8 0.102 0.689 1.5 0.179 0.439 6 0.439

BU strength

AL 0.000 0 0.000 0.360 8 0.360 0.481 0.5 0.009 0.179 8 0.179 0.407 8 0.281

LL 0.054 1.5 0.054 0.395 0 0.000 0.515 0.75 0.024 0.000 3 0.000 0.319 0 0.000

OL 0.000 8 0.000 0.609 3 0.574 0.451 8 0.205 0.480 6 0.480 0.402 2 0.285

TD-BU
strength

AL 0.000 2 0.000 0.000 8 0.000 0.541 8 0.541 0.542 8 0.542 0.294 8 0.294

LL 0.144 0.03 0.000 0.530 0.5 0.067 0.141 0.1 0.017 0.301 0 0.000 0.086 2 0.086

OL 0.000 8 0.000 0.229 8 0.229 0.599 6 0.506 0.718 6 0.641 0.292 2 0.118
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Tab. S3 Best embedding dimension per network node and environmental variables in the ten lakes.
The embedding dimension was estimated using simplex projection over E 2:15 (Methods).

BAL BIE BRZ GRE HAL MUR NEU SEM THU ZHR

Cy 4 13 15 9 9 11 10 13 15 14

Gr1 13 12 13 15 12 13 12 15 4 15

Gr2 8 15 15 11 5 14 5 11 11 12

Di1 3 13 12 12 15 11 8 12 7 11

Di2 12 14 5 6 11 13 6 13 12 15

Go1 12 15 15 5 15 3 9 8 15 15

Go2 5 11 15 3 15 14 7 13 14 15

Cr1 5 11 15 13 13 15 12 12 13 13

Cr2 8 13 11 12 12 11 12 15 3 14

Mi 15 15 15 12 11 15 7 14 15 15

Ci 12 NA NA 13 6 NA NA 6 NA NA

Ro 4 NA NA 14 7 NA NA 3 NA NA

He 11 13 14 14 12 15 11 14 12 15

Om 14 15 15 8 15 12 7 13 12 15

Pr 11 12 6 14 15 13 10 12 15 11

T 11 10 10 12 10 9 11 11 9 10

P 11 5 2 11 11 2 5 13 2 13
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Methods (extended)

Data collection

Plankton abundance time series

Plankton samples were collected between 1977 and 2020 monthly across 10 Swiss lakes (Fig. 1, Tab. S1).

Lake code names are BAL = Baldegg, BIE = Biel, BRZ = Brienz, GRE =Greifen, HAL = Hallwil, MUR

= Murten, NEU = Neuenburg, SEM = Sempach, THU = Thun and ZHR = Zurich. In Lake Baldegg and

Sempach, data from 2010 onwards were excluded from analyses due to irregular plankton sampling after

phosphate levels stabilized (i.e., bi- or tri-monthly). Samples in all lakes have been collected at identical

locations over the years and counted by the same taxonomists for each lake.

Phytoplankton and small zooplankton grazers (i.e., rotifers and ciliates) were sampled integrated over the

water column in the photosynthetic zone using a Schröder sampler 1 or at discrete depths, where the

lowest depth varied across lakes (Tab. S1). Sampling depth changed in BRZ from 0-20 m to 0-40 m in

2012, in BIE from 0-10 m to 0-15 m in 1999 and to 0-20 m in 2012, in MUR from 0-10 m to 0-15 m in

2012, in NEU from 0-20 m to 0-40 m in 2012; and in THU from 0-20 m to 0-40 m in 2012. Taxa

abundances were converted to cells/L to compare across lakes. In Lake Zurich, the sampling method was

changed in 2012 from discrete depth sampling (0, 1, 2.5, 5, 7.5, 10, 12.5, 15, 20, 30, 40, 60, 80, 100, 120,

130, 135 m) to integrated sampling (<20 m, 20-40 m and >40 m of the water column). To compare

discrete with integrated samples, we multiplied each discrete sample by a conversion factor (obtained

from a year of sampling where both methods were used simultaneously and biomass estimates between

samplings were comparable) and aggregated them to match the corresponding integrated samples, e.g.

multiplied discrete samples within 0 to 20 m by their corresponding factor and summed them up to match

the integrated samples of < 20 m. Lake Biel, Baldegg, Murten, Neuenburg, Thun and Zurichsampling did

not consider small grazers (ciliates and rotifers).

Large zooplankton was sampled using net-tows going from the bottom of the lake to the surface. Specific

details about the lake sampling protocols can be found elsewhere2,3. Zooplankton densities were converted

to individuals/m2 to compare across lakes. A full taxonomic list of species considered within this study

can be found in an open-access data repository linked to this article (link to ERIC server). Plankton

abundance data were winsorized, where values lying outside the 99% quantile were replaced by the

highest values within the 99% quantile using the function Winsorize from the R package DescTools (v
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0.99.43). This was done to reduce the power of large outliers without deleting data, since small typos can

lead to large outliers in plankton counts. The main trends in connectance and interaction strength were

robust to winsorizing (Fig. S14).

Water temperature and nutrient availability as environmental drivers

Chemical and physical parameters were measured monthly (occasionally bi- or tri-monthly) in the same

locations where plankton samples were collected. Samples were taken from the surface to the lake’s

bottom at discrete depths. We focused on two main drivers of anthropogenic change in Swiss lakes, water

temperature and freely available dissolved phosphate (PO4)4,5. We used mean water temperature and

phosphate concentration over the whole water column. Missing values were estimated using linear

interpolation with na_approx from the R package zoo (v 1.8-9). The approximated values ranged

between 1 and 268 (Tab. S1). After re-oligotrophication, PO4 levels remained constant and often below

the detection limit in the lakes Biel, Brienz, Hallwil, Murten, Neuchatel and Thun. Sampling for nutrients

in those lakes was changed to bi- or tri-monthly early, resulting in 120-268 approximated values.

Conceptual planktonic network

To understand processes at the network level and control for potential biases in taxa classification across

lakes and over time, we aggregated plankton taxa abundances into a conceptual network based on

taxonomic classification, body size, and feeding behavior6. This allowed us to overcome the limitations of

a monitoring frequency lower than the generation time of the organisms (monthly sampling and noise in

time series), and account for the intrinsic variability of species interactions while reducing the potential

effects of taxonomic misclassification7. The dynamics of trophic guilds occur at the scale of months, as

opposed to the dynamics of taxa which occur at the scale of days, and thus well represent seasonal and

interannual network transitions6,8.

Our conceptual network consisted of up to 15 nodes (guilds) across three trophic levels of the food web,

containing large invertebrate predators, omnivores, large herbivore grazers, small grazers, mixotrophs,

and primary producers. In Lake Biel, Brienz, Murten, Neuenburg and Zurich, we only had 13 guilds

because of missing counts for rotifers and ciliates. We conducted a sensitivity analysis where we excluded

rotifers (R) and ciliates (Ci) from Lake Baldegg, Greifen, Hallwil and Sempach data. Connectance and

interaction strength were similar with and without rotifers (R) and ciliates (Ci) (Fig. S13). Because we

could not differentiate between calanoid and cyclopoid nauplii nor their juvenile stage, and thus had
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insufficient information on their feeding behavior, nauplii were excluded from our study. Small single cell

cyanobacteria were excluded as well, since most taxa are below the size-detection limits of traditional

microscopy.

The relationships (links) between nodes can be trophic (classic predator-prey relationship), non-trophic

(i.e., mutualisms and competition) or hybrid, where guilds can have trophic or non-trophic relationships

(i.e., mixotrophic dinoflagellates) (Fig. 1c). All links are bi-directional (in both directions), which means

trophic and hybrid links can go up the network (BU), i.e., from a primary producer to a grazer, as well as

down the network (top-down), i.e., from a grazer to a primary producer (Fig. 1c).

Data analysis

Chaos and nonlinear dynamics are ubiquitous in plankton communities, making linear statistical

approaches unfit to study long-term changes in their network properties9. Linear statistical techniques are

based on a correlation between two or more variables. In nonlinear systems, causality does not require

correlation and correlation does not imply causation10. Nonlinear systems can exhibit state dependency,

where the relationships between variables may change depending on the system’s state. For example,

large herbivore populations (H) may be affected by invertebrate predators (C2) only when their resource,

phytoplankton (P), is scarce11. Equation-free approaches, such as empirical dynamic modeling (EDM),

which can recover dynamics from empirical data, overcome this limitation and offer a promising

non-parametric way to study nonlinear systems.

Empirical dynamic modeling (EDM) is rooted in state-space reconstruction, which does not assume any

equations governing the system and recovers dynamics from empirical data. In EDM, a state space (i.e.,

an attractor) is reconstructed using time series belonging to the same dynamical system. An attractor is a

description of rules that govern the system - without any a priori assumptions. For example, suppose the

dynamics of large herbivores (H) are affected by phytoplankton (P) and invertebrate predators (C2). In

that case, an attractor of the system’s dynamics can be reconstructed by plotting the time series of H, P

and C2 along the x,y, and z axes. An educative animation on state-space reconstruction can be found here:

https://deepeco.ucsd.edu/videos/#page-content.

In practice, we typically don’t have knowledge of or data on every variable in a system. Takens’ Theorem

(1981), however, postulated that one can substitute any unknown or unobserved variables with a lag of a
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single time series to reconstruct the system’s attractor12. If two variables are from the same dynamical

system, i.e. large herbivores (H) and phytoplankton (P), information about current phytoplankton

populations will be encoded in past large herbivores' time series. Thus, if we have no information on

phytoplankton (P) and invertebrate predators (C2), the system from above can be reconstructed using

large herbivore abundance (H) at t-τ and H abundance at t-2τ respectively, where τ stands for time lag

(e.g. 1 month).

To reconstruct the attractor of a system properly, one needs to know the ideal embedding. The ideal

embedding is defined by the number of variables or lags used to build a system’s attractor, each of them

representing a coordinate axis; and provides information on the complexity of the system and the quality

of data (i.e. highly resolved time series contain more information on the system and will thus result in a

higher ideal embedding dimension). In our example above, the embedding dimension was set arbitrarily

to three and a shadow attractor was reconstructed using large herbivore abundance (H) at t, t-τ and t-2τ.

Ideally, we would define the best embedding first and then reconstruct the attractor using (H(t), H(t-τ),

H(t-2τ), …, H(t-(E)τ), where τ is the desired lag (i.e. one month) and E the best embedding (see below

for further explications).

Empirical dynamic modeling, can be used to determine the number of dimensions required to describe a

system (best embedding)13,14, quantify the non-linearity of time series15–17, forecast future system

states13,18–20, infer causality between two variables10, and to quantify how relationships (interactions)

between variables change with changing system state21. We expanded the classical empirical dynamical

framework by adding a temporal component to convergent cross-mapping (studying local correlations

among observations and predictions within a moving window) and using the predictive skill rho

(corrected for seasonality) as a proxy for how strongly a variable interacts and/or affects another variable.

Below we briefly introduce the EDM concepts used in this paper and how we applied them to our data.

Please refer to the cited references for proof of concepts and further information.

All analyses were performed using the rEDM package in R (v-0.7.5). Up-to-date versions of rEDM can

be found at https://github.com/SugiharaLab/rEDM. More information to perform EDM analyses can be

found here: https://deepeco.ucsd.edu/resources/#page-content. “Empirical dynamic modeling for

beginners” is another helpful resource, addressing basic applications with step-by-step example code 22.

Optimal Embedding Dimension
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To reconstruct the dynamic attractor, one needs to know the ideal embedding dimension, i.e. the number

of independent variables. The ideal embedding can be defined with simplex projection, a forecasting

method relying on nearest neighbors 13. Simplex projection uses only neighboring points in the state space

of the predicted variable to make forecasts. The highest prediction skill (rho, Pearson’s correlation ρ

between the observed and the predicted values) indicates the optimal embedding dimension. If the right

number of lags are used, the attractor reconstruction will map closely to that of the true underlying

attractor of the system. If embeddings are insufficient, points corresponding to different system states will

overlap in the reconstruction and thus hinder forecast accuracy.

Convergent Cross-Mapping

Convergent cross-mapping (CCM) is considered a “non-linear causality test” and assesses if one variable

significantly affects another. As a consequence of Taken’s theorem, univariate attractor reconstructions

map to the original system and each other. By testing for mapping between two univariate attractor

reconstructions, we can determine if two variables belong to the same system and thus share a causal

relationship 10. If large herbivores (H), phytoplankton (P) and invertebrate predators (C2) belong to the

same system (are causally linked) and the best embedding is 3, the attractor (H(t), H(t-τ), H(t-2τ)) maps

to the attractor (H(t), P(t), C2(t)) as well as (P(t), P(t-τ), P(t-2τ)) and (C2(t), C2(t-τ), C2(t-2τ)). In

practice, this is done by testing how well a variable can be predicted using another variable's attractor

reconstruction. We measure the forecasting skill rho (Pearson's correlation between predictions and

observations), also called the “cross-mapping skill”. For example, we may use the univariate

reconstructed attractor (P(t), P(t-τ), P(t-2τ)) based on phytoplankton (P) to predict large herbivore

abundance (H) at t or t-τ. Note that some causal relationships may be unidirectional, e.g., temperature

will map to large herbivores (H) but not vice versa.

Convergence and surrogate time series are critical components of inferring causality between two

variables using empirical data. Cross-mapping from one variable to another shall be “convergent”, i.e., the

predictive skill rho improves with library size (time-series length). Reconstructed univariate attractors

become denser with more library points and thus, forecasts using nearest neighbors become better. The

state space is reconstructed using different library lengths (number of data points) subsampled randomly

from the time series to test for convergence. Seasonal co-occurrence patterns might obscure a causal

relationship of one variable to another, which is especially true for plankton communities (i.e. PEG model
23. Two variables with a seasonal cycle can have a high prediction skill, even if they don’t share a causal

link. Therefore, one can compare the forecasting skill rho of the original time series to rho estimated from
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seasonal surrogates. Seasonal surrogate time series are created by randomly reshuffling the time series

while keeping the seasonal signal (i.e., reshuffling among months).

Local cross-mapping skills (rho) describe changes in significant links over time and can be used to

estimate time-varying (interaction) strength. Cross-mapping-skill is usually calculated over the whole

time series. Local cross-mapping skills document changes in (plankton) networks and aid in overcoming a

common trend. Instead of calculating Pearson’s correlation between all observations and predictions,

cross-mapping skills are estimated within a moving window. This results in a time series of

cross-mapping skills, which can be used to derive time-dependent causal links when compared to seasonal

surrogate time series. The local cross-mapping skill can be used as a proxy for the strength of the causal

link when subtracting the seasonal component (i.e., rhooriginalTS - mean (rhosurrogateTS)). If this is done for a

link between two network nodes, i.e., phytoplankton (P) and large herbivores (H), local cross-mapping

skills can be used as a proxy for interaction strength between those two nodes.

Chaos and nonlinear dynamics are ubiquitous in plankton communities, making linear statistical

approaches unfit to study long-term changes in their network properties9. In particular, nonlinear

dynamics can obscure correlations between variables making causal links undetectable with classical

statistical methods. Equation-free approaches, such as empirical dynamic modeling (EDM), which can

recover dynamics from empirical data, overcome this limitation and offer a promising non-parametric

way to study nonlinear systems (see http://tinyurl.com/EDM-intro for a brief video introduction).

Empirical dynamic modeling, which is rooted in state-space reconstruction, can be used to determine the

number of dimensions required to describe a system (best embedding)13,14, quantify the non-linearity of

time series15–17, forecast future system states13,18–20, infer causality between two variables10, and to quantify

how relationships (interactions) between variables change with changing system state21. A more in-depth

description of EDM can be found in Supplementary Information. We expanded the classical EDM

framework by adding a temporal component to convergent cross-mapping (studying local correlations

among observations and predictions within a moving window)10 and using the predictive skill rho

(corrected for seasonality) as a proxy for how strongly a network node is affected and/or affects another

node. Moreover, we used S-maps to explore the interactive effects of water temperature and nutrient

levels on network properties15.

Reconstructing a time-varying causal network using convergent cross-mapping
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Consider two variables, V1 (e.g., phytoplankton) and V2 (e.g., large herbivores or temperature). We want

to know whether and how strongly V1 is impacted by V2; i.e., V1 ← V2. This is determined by

measuring how much V2 has impacted the dynamics (time series) of V1 – how much information about

V2 has been imprinted in the time series of V1. This information allows one to use V1 to estimate the

states of the driver V2, a process known as cross-mapping between variables10. The stronger the signature

(causal impact in the affected variable) the better the cross-map estimate. To do this in the R package

rEDM, we would call V1 xmap V2 where again the direction of effect we are testing is V1 ← V2. Note

that the time series require added placeholders for missing values to ensure having evenly spaced monthly

data. Since the time series used are on different scales (e.g.; temperature measurements and abundance

data), we rescale them using the function scale in the R package base (v-4.1.0).

Embedding dimension. We use simplex from the R package rEDM (v-0.7.5) to define the best

embedding dimension for V1 using simplex projection (Supplementary Information). The embedding

dimension was run over E = 2:15. Time lag and prediction horizon were set to 1 month. The number of

nearest neighbors used to make predictions are set to E+1. Forecasting was done using leave-one-out

cross-validation and the best embedding was selected based on maximizing the forecasting skill rho (Tab.

S3).

Convergence test. We tested the convergence of V1 xmap V2 by comparing the predictive power of

using 20% and 50% of the data, respectively. This was done with 100 consecutive random subsets of the

time series. The ideal embedding dimension was defined for V1 based on forecasting with

simplex-projection (see above and Tab. S3), while the time lag tp was kept at 0. Convergent

cross-mapping was run with the function ccm from the R package rEDM (v-0.7.5). Convergence was

considered true if rho50% > rho20% for the 100 subsets, determined by a one-sided t-test (95% quantile).

Local cross-mapping-skill (rho). If the convergence test was significant, we performed CCM between

V1 and V2 this time using the maximum library (whole time series) and tp = -1. Using the predictions

from the CCM-output, we calculated local rho’s, i.e. the correlation between observation of V2 and

predictions of V2 (using V1’s attractor) within moving windows (n=60 months, sliding 1 month forward

at a time). This resulted in a time series of rho’s (forecast skills).

Seasonal surrogates. The local rho’s were then compared to rho’s from 100 random seasonal surrogate

time series for each time window (time point tx). We considered the link V1 ← V2 at time point tx as

significant if 95% of the times rhooriginalTS > rhosurrogateTS. If the link was significant, we estimate the
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strength of V1 ← V2 at tx by removing the seasonal component from the local rhooriginalTS, i.e., rhooriginalTS -

mean (rhosurrogateTS), the average local rho of the 100 surrogate time series. Negative rho’s were always set

to 0.

Network links. To calculate network connectance, we summed all causal links (passed the surrogate test)

per lake and date (month) and divided them by the total possible links for this network (based on the

conceptual network in Fig. 1c and convergence test). We obtained connectance (%), the number of

connected nodes, for this time point and a time series of connectance per lake (Fig. 2a).

Taxa interaction strength. We calculate the mean strength of links across nodes per date and lake. This

resulted in average link strength for this time point and a time series of average link strength per lake

(Fig. 2b). Taxa interaction strength over time and across lakes (Fig. ED6) was calculated by estimating

the average strength of each link and multiplying it by its prevalence over time (per lake), i.e., corrected

the strength for how often it occurred in the time series, and then average across lakes.

Environment effect on guilds. To get at the strength of water temperature and phosphate effects over

time on each guild’s abundance (Fig. ED6), we calculated the local cross-mapping-skill rho and

compared it to a value obtained by a seasonal null model. We averaged the strength of water temperature

and phosphate effects for each node and multiplied by its prevalence over time and then averaged across

lakes (analogous to calculating interaction strengths between guilds over time across lakes).

Feedback between temperature and nutrients. To test for a causal relationship (feedback) between

water temperature and phosphate concentration (Fig. ED2), we used CCM on the whole time series and

performed a convergence test (n=100) and seasonal surrogate test (n=100). If both the convergence test

(rho50% > rho20%) and seasonal surrogate test (>95% of times rhooriginalTS > rhosurrogateTS) passed, we

considered an effect as significant (lake displayed as points in Fig. ED2). To get a robust estimation of the

effect’s magnitude (i.e., filter out single episodic events and diminish the power of outliers), we multiplied

the strength of the effect at each time point by its prevalence over time (per lake), i.e., we corrected the

strength of the causal effect by how often a significant effect occurred in the time series. The resulting

value was plotted on the y-axis in Fig. ED2.

Trophic controls. We summed up all causal links going up (bottom-up) and down (top-down) the food

web (i.e., trophic and hybrid links) per time point and lake and divided them by all the total possible

bottom-up or top-down links for this network (Fig. 1c). Moreover, we averaged the strength of all
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significant bottom-up and top-down links per time point and lake. Then we calculated the difference

between realized top-down and bottom-up links (i.e., top-down connectance - bottom-up connectance)

and top-down and bottom-up strength (i.e., top-down link strength - bottom-up link strength). This

resulted in a time series of changes in trophic controls over time, whereas a value > 0 indicated top-down

and < 0 bottom-up control (Fig. 4a-b). If there were no significant bottom-up and/or top-down links at a

given time point, connectance was set to 0 and strength to NA (unknown).

Interaction types. We summed up all trophic, non-trophic and hybrid links (according to Fig. 1c) per

time point and lake and divide them by all total possible links per interaction type. Then we averaged

connectance and interaction strength for trophic, non-trophic and hybrid links per time point across lakes.

This resulted in a time series of connectance (%) and strength of trophic, non-trophic and hybrid links

(Fig. S7). We compared connectance (%) and strength of interaction types using a Wilcoxon test, a

non-parametric method for testing if samples originate from the same distribution (Fig. 5).

Scenario exploration using multivariate S-maps

We used multivariate S-maps to model network properties and extract their relationship with phosphate

levels and water temperature. S-maps compute a unique locally weighted linear regression to make a

forecast at each point in time when closer points on the attractor are given a higher weight. The strength

of weighting is controlled by the parameter theta and indicates the degree of non-linearity and state

dependency. Each regression provides a set of coefficients that define relationships (dynamics) between

variables at each unique state. These coefficients were used to estimate (predict) each network property at

varying levels of temperature and phosphate (Fig. 2, 4 c-d, Fig. S4-5). To account for important

differences in the morphometry of lakes, which influence these ecosystems' responses to changes in

nutrient inputs and warming, we included depth at the sampling site and lake total water volume in the

S-map models25. Confidence in the predictions can be influenced by the parameter space covered by the

lake time series, e.g., less confidence in the predictions for combinations of high water temperature and

phosphate levels (Fig. S10).

We ran the s-map models using rEDM (v-0.7.5) and the function block_lnlp for 100 random subsets,

using 50% of the data and averaged (mean) the predictions. The variance was calculated by estimating the

standard deviation among the 100 predictions. Environmental drivers were smoothed within 60-month

moving windows to match the temporal scale of modeled network properties. We chose 100 values for

temperature and phosphate levels (each), ranging from the minimum to the maximum values observed
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across all lakes. This resulted in a grid of 10000 model predictions (Fig. 2, 4 c-d, Fig. S4-5). Methods

within the function were set to “s-map” and the exclusion radius to 12 to avoid the high temporal

autocorrelation caused by the moving windows. Theta was selected to maximize predictive skill rho when

varied over a list of values (0, 0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 0.5, 0.75, 1.0, 1.5, 2, 3, 4,

6, and 8) and tp set to 0.
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