Supporting Information to "Competition alters species' plastic and genetic response to environmental change"

Lynn Govaert^{1,2,3,*}, Luis J. Gilarranz², Florian Altermatt^{1,2,3}

¹Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland

²Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland

³URPP Global Change and Biodiversity, University of Zurich, Winterthurerstrasse 190, 8057 Zurich

^{*}Corresponding author: lynn.govaert@igb-berlin.de. Current address: Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587 Berlin, Germany

This file contains supplementary tables:

- Table S1: Summary output regression analysis of the phenotypic response during the selection phase for *Paramecium aurelia* reared in the absence and presence of competing species.
- Table S2: Summary output regression analysis of the phenotypic response during the selection phase for *Spirostomum teres* reared in the absence and presence of competing species.
- Table S3: Summary regression analysis for the combined data set of *Paramecium aurelia* reared in the absence and presence of competing species during the common garden.
- Table S4: Summary regression analysis for the combined data set of *Spirostomum teres* reared in the absence and presence of competing species from the common garden.
- Table S5: Summary regression analysis for the partitioning of (ancestral) plasticity, mean trait evolution and evolution of plasticity of temporal trait change in *Paramecium aurelia* between the ancestral population of the selection phase (day 4) and each selected population evolved in the absence of competing species (given by historical salinity, i.e. the salinity used during the selection phase).
- Table S6: Summary regression analysis for the partitioning of (ancestral) plasticity, mean trait evolution and evolution of plasticity of temporal trait change in *Paramecium aurelia* between the ancestral population of the selection phase (day 4) and each selected population evolved in the presence of competing species (given by historical salinity, i.e. the salinity used during the selection phase).
- Table S7: Summary regression analysis for the partitioning of (ancestral) plasticity, mean trait evolution and evolution of plasticity of temporal trait change in *Spirosto-mum teres* between the ancestral population of the selection phase (day 4) and each selected population evolved in the absence of competing species (given by historical salinity, i.e. the salinity used during the selection phase).
- Table S8: Summary regression analysis for the partitioning of (ancestral) plasticity, mean trait evolution and evolution of plasticity of temporal trait change in *Spirosto-mum teres* between the ancestral population of the selection phase (day 4) and each selected population evolved in the presence of competing species (given by historical salinity, i.e. the salinity used during the selection phase).
- Table S9: Summary of regression analysis for the phenotypic plasticity response to salinity of *Paramecium aurelia* evolved in the absence of competing species.
- Table S10: Summary of regression analysis for the phenotypic plasticity response to salinity of *Paramecium aurelia* evolved in the presence of competing species.
- Table S11: Summary of regression analysis for the phenotypic plasticity response to salinity of *Spirostomum teres* evolved in the absence of competing species.

- Table S12: Summary of regression analysis for the phenotypic plasticity response to salinity of *Spirostomum teres* evolved in the presence of competing species.
- Table S13: Genetic trait difference for high salinity selected *Paramecium aurelia* populations comparing those evolved in the absence and presence of competing species.
- Table S14: Trait difference due to historical competition and the presence of competitors for the salinity selected *Paramecium aurelia* populations evolved in the 0, 0.5 and 1 g/l salt conditions.

and supplementary figures:

- Figure S1: Temporal phenotypic difference during the selection phase (a-c) *Paramecium aurelia* and (d-f) *Spirostomum teres* along salinity and between populations in the absence and presence of competing species.
- Figure S2: Common garden results of *Paramecium aurelia* and *Spirostomum teres* visualized as reaction norms in the absence and presence of competition.
- Figure S3: Robustness analysis for the effect sizes and their corresponding p-values obtained from regression analysis on the common garden data for *Paramecium aurelia*.
- Figure S4: Robustness analysis for the effect sizes and their corresponding p-values obtained from regression analysis on the common garden data for *Spirostomum teres*.
- Figure S5: Reaction norm analysis for *Paramecium aurelia* quantifying trait change in biomass, cell shape and dispersal between the ancestral and each selected population.
- Figure S6: Reaction norm analysis for *Spirostomum teres* quantifying trait change in biomass, cell shape and dispersal between the ancestral and each selected population.
- Figure S7: Phenotypic plasticity response to salinity of *Paramecium aurelia* for biomass, cell shape and dispersal ability of the ancestral (Anc.) and each of the selected (0, 0.5, 1, 2 and 4 g/l) populations evolved in the absence and presence of competitors.
- Figure S8: Phenotypic plasticity response to salinity of *Spirostomum teres* for biomass, cell shape and dispersal ability of the ancestral (Anc.) and each of the selected (0, 0.5, 1, 2 and 4 g/l) populations evolved in the absence and presence of competitors.
- Figure S9: Trait difference due to historical competition and the presence of competitors for the salinity selected *Paramecium aurelia* populations evolved in the 0, 0.5 and 1 g/l salt conditions.
- Figure S10: Biomass and cell shape values for *Paremecium aurelia* and *Spirostomum teres* obtained in the common garden of those populations evolved in the absence of competition along the salinity conditions used in the selection phase.
- Figure S11: Community composition at the start (day 4) and end (day 78) of the experimental evolution and the common garden (day 82).

• Figure S12: Genetic trait difference for the highest salinity selected *Paramecium aurelia* populations comparing those evolved in the absence and presence of competing species including microcosm ID 120.

Supplementary Tables

Table S1: Summary output regression analysis of the phenotypic response during the selection phase for *Paramecium aurelia* reared in the absence and presence of competing species. Regression slope (β) ± standard error (SE), degrees of freedom (df), test statistic (*t*-value) and *p*-value are given for traits biomass (quantified as bio-area), cell shape (quantified as aspect ratio), and dispersal ability (quantified as gross speed) for *Paramecium aurelia* reared in the absence and presence of competing species during the selection phase. A total of n = 3084 data points were used for this analysis. Significant effects (p < 0.05) are highlighted in bold. R^2 values report the variation explained by the fixed effects (R^2_{fixed}) and by both fixed and random effects (R^2_{total}) for the three traits (detailed in Methods).

Biomass	$\beta \pm SE$	df	t-value	p-value
Salinity	-9.296 ± 82.220	39.485	-0.113	0.911
Competition	162.860 ± 137.175	28.062	1.187	0.245
Time	-2039.762 ± 125.427	367.150	-16.262	< 0.001
Biofraction Spite	-252.370 ± 259.228	2772.703	-0.974	0.330
Density	-4.561 ± 2.204	123.469	-2.069	0.041
Salinity \times Competition	73.807 ± 95.016	38.791	0.777	0.442
Salinity \times Time	71.913 ± 87.121	120.186	0.825	0.411
${\bf Competition}\times{\bf Time}$	-509.507 ± 139.335	2210.023	-3.657	< 0.001
Sal \times Competition \times Time	-36.765 ± 104.423	237.562	-0.352	0.725
$\underline{\qquad R_{fixed}^2 = 0.4680, R_{total}^2 = 0.493}$	1			
Cell shape	$\beta \pm SE$	df	<i>t</i> -value	<i>p</i> -value
Salinity	$5.383e-02 \pm 4.192e-02$	4.949e + 01	1.284	0.205
Competition	$7.119e-02 \pm 7.779e-02$	2.352e + 01	0.915	0.369
Time	$4.131e-01 \pm 5.041e-02$	6.799e + 02	8.195	< 0.001
Biofraction Spite	$-9.559e-02 \pm 9.566e-02$	3.041e + 03	-0.999	0.318
Density	$1.090e-03 \pm 9.366e-04$	3.888e + 02	1.164	0.245
Salinity \times Competition	$-7.845e-02 \pm 4.944e-02$	$3.957e{+}01$	-1.587	0.121
$\hat{\mathbf{Salinity} \times \mathbf{Time}}$	$-9.294e-02 \pm 3.820e-02$	1.962e + 02	-2.433	0.016
Competition \times Time	$-3.608e-01 \pm 5.223e-02$	2.370e + 03	-6.907	< 0.001
$Sal \times Competition \times Time$	$1.309e-01 \pm 4.361e-02$	3.241e + 02	3.003	0.003
$\underline{R_{fixed}^2} = 0.0592, \ R_{total}^2 = 0.179$	8			
Dispersal ability	$\beta \pm SE$	df	<i>t</i> -value	<i>p</i> -value
Salinity	-8.081 ± 22.831	54.727	-0.354	0.725
Competition	35.140 ± 40.886	28.603	0.859	0.397
\mathbf{Time}	-150.905 ± 29.232	624.694	-5.162	< 0.001
Biofraction Spite	94.333 ± 56.589	3014.059	1.667	0.100
Density	-2.514 ± 0.538	317.907	-4.673	< 0.001
Salinity \times Competition	-44.292 ± 26.691	46.310	-1.659	0.104
Salinity \times Time	1.114 ± 21.679	186.356	0.051	0.960
${\bf Competition}\times{\bf Time}$	-144.973 ± 30.756	2379.796	-4.714	< 0.001
$\mathbf{Sal} \times \mathbf{Competition} \times \mathbf{Time}$	72.304 ± 25.008	319.101	2.891	0.004
$R_{fixed}^2 = 0.0781, R_{total}^2 = 0.170$	0			

Table S2: Summary output regression analysis of the phenotypic response during the selection phase for *Spirostomum teres* reared in the absence and presence of competing species. Regression slope (β) \pm standard error (SE), degrees of freedom (df), test statistic (*t*-value) and *p*-value are given for traits biomass (quantified as bio-area), cell shape (quantified as aspect ratio), and dispersal ability (quantified as gross speed) for *Spirostomum teres* reared in the absence and presence of competing species during the selection phase. A total of n = 1294 data points were used for this analysis. Significant effects (p < 0.05) are highlighted in bold. R^2 values report the variation explained by the fixed effects (R^2_{fixed}) and by both fixed and random effects (R^2_{total}) for the three traits (detailed in Methods).

Biomass	eta	df	<i>t</i> -value	p-value
Salinity	610.58 ± 223.57	53.72	2.731	0.009
Competition	-261.84 ± 556.69	55.13	-0.470	0.640
Time	1592.29 ± 252.09	1184.60	6.316	< 0.001
Biofraction Pau	1408.29 ± 1846.79	463.97	0.763	0.446
Density	-11.76 ± 6.17	192.47	-1.906	0.058
Salinity \times Competition	-662.76 ± 430.55	63.13	-1.539	0.129
${\bf Salinity}\times{\bf Time}$	-1055.92 ± 184.46	587.67	-5.724	< 0.001
$\textbf{Competition} \times \textbf{Time}$	-1967.91 ± 901.09	982.65	-2.184	0.029
$Sal \times Competition \times Time$	2236.24 ± 912.71	621.81	2.450	0.015
$\frac{R_{fixed}^2=0.049, R_{total}^2=0.133}{2}$				
Cell shape	$\beta \pm SE$	df	<i>t</i> -value	p-value
Salinity	$-1.814e-01 \pm 1.845e-01$	6.215e + 01	-0.984	0.329
Competition	$-5.602e-01 \pm 4.593e-01$	6.164e + 01	-1.220	0.227
Time	$1.670e + 00 \pm 2.054e - 01$	1.207e + 03	8.130	< 0.001
Biofraction Pau	$-2.883e + 00 \pm 1.509e + 00$	5.167e + 02	-1.911	0.057
Density	$-1.162e-02 \pm 5.056e-03$	2.265e + 02	-2.297	0.023
Salinity \times Competition	$3.099e-01 \pm 3.549e-01$	7.025e + 01	0.873	0.385
Salinity \times Time	$-1.061e-01 \pm 1.506e-01$	6.453e + 02	-0.705	0.481
${\bf Competition}\times{\bf Time}$	$1.686e + 00 \pm 7.346e - 01$	1.026e + 03	2.295	0.022
$Sal \times Competition \times Time$	$-1.970e + 00 \pm 7.451e - 01$	$6.735e{+}02$	-2.644	0.008
$R_{fixed}^2 = 0.1507, R_{total}^2 = 0.2297$				
Dispersal ability	$\beta \pm SE$	df	<i>t</i> -value	<i>p</i> -value
Salinity	7.6202 ± 12.9847	40.5482	0.587	0.561
Competition	51.8668 ± 32.5373	52.8887	1.594	0.117
Time	285.5693 ± 15.8943	1048.4906	17.967	< 0.001
Biofraction Pau	-130.0620 ± 114.2791	362.6806	-1.138	0.256
Density	-2.5573 ± 0.3736	120.2324	-6.845	< 0.001
Salinity \times Competition	-14.6756 ± 25.3208	62.3073	-0.580	0.564
${\bf Salinity}\times{\bf Time}$	-56.2762 ± 11.4629	455.8687	-4.909	< 0.001
Competition \times Time	-87.0554 ± 56.5613	849.8959	-1.539	0.124
Sal \times Competition \times Time	-46.0942 ± 56.8212	534.9767	-0.811	0.418
$R_{fixed}^2 = 0.3061, R_{total}^2 = 0.3482$				

Table S3-a: Summary regression analysis for the combined data set of *Parame*cium aurelia reared in the absence and presence of competing species during the common garden. Regression slope (β) \pm standard error (SE), degrees of freedom (df), test statistic (t-value) and p-value are given for biomass (quantified as bio-area), cell shape (quantified as cell size ratio), and dispersal ability (quantified as gross speed) for P. aurelia reared in the absence and presence of competition obtained during the common garden. Historical salinity (Hist. sal.) refers to the salinity used in the selection phase. Historical competition (Comp.) refers to the absence or presence of competing species in the selection phase. Common garden salinity environment (CG sal.) refers to the salinity used in the common garden. Density refers to the intraspecific density of the species. Biofraction (Biofrac.) S. teres refers to the proportional biomass of the competitor species S. teres. A total of n = 7533 data points were used for this analysis. Significant effects (p < 0.05) are highlighted in bold. R^2 values report the variation explained by the fixed effects (R_{fixed}^2) and by both fixed and random effects (R_{total}^2) (detailed in Methods).

Biomass	$\beta \pm SE$	df	<i>t</i> -value	p-value
Hist. sal.	80.857 ± 65.562	38.054	1.233	0.225
CG sal.	165.631 ± 53.105	46.339	3.119	0.003
Comp.	372.819 ± 174.624	26.984	2.135	0.042
Biofrac. S. teres	-22.890 ± 167.878	5872.744	-0.136	0.892
Density	-5.023 ± 2.114	3742.823	-2.376	0.018
Hist. sal. \times CG sal.	-11.384 ± 18.681	37.880	-0.609	0.546
Hist. sal. \times Comp.	-193.950 ± 83.473	25.474	-2.324	0.028
CG sal. \times Comp.	-32.778 ± 37.960	7119.154	-0.863	0.388
Hist. sal. \times CG sal. \times Comp.	5.151 ± 13.418	7510.317	0.384	0.701
$\underline{\qquad R_{fixed}^2 = 0.0455, R_{total}^2 = 0.201}$	10			
Cell shape	$\beta \pm SE$	df	<i>t</i> -value	p-value
Hist. sal.	0.002 ± 0.031	52.300	0.055	0.956
CG sal.	-0.182 ± 0.037	37.758	-4.936	< 0.001
Comp.	-0.481 ± 0.067	34.115	-7.207	< 0.001
Biofrac. S. teres	0.045 ± 0.101	4482.007	0.440	0.660
Density	-0.004 ± 0.001	2737.770	-3.294	0.001
Hist. sal. \times CG sal.	0.008 ± 0.013	31.185	0.581	0.566
Hist. sal. \times Comp.	0.122 ± 0.031	29.614	3.923	< 0.001
$\mathbf{CG} \ \mathbf{sal.} \times \mathbf{Comp.}$	0.109 ± 0.023	7315.650	4.715	< 0.001
Hist. sal. \times CG sal. \times Comp.	-0.015 ± 0.008	7508.625	-1.873	0.061
$R_{fixed}^2 = 0.1335, R_{total}^2 = 0.211$	10			

Table S3-b: CONTINUE TABLE S3

Dispersal ability	$\beta \pm SE$	df	t-value	p-value
Hist. sal.	3.762 ± 28.739	56.436	0.131	0.896
CG sal.	-195.564 ± 34.060	49.993	-5.742	< 0.001
Comp.	-228.782 ± 64.216	40.982	-3.563	0.001
Biofrac. S. teres	-87.498 ± 96.953	4578.145	-0.902	0.367
Density	-12.349 ± 1.216	2804.397	-10.151	< 0.001
Hist. sal. \times CG sal.	20.313 ± 12.126	41.186	1.675	0.101
Hist. sal. \times Comp.	79.097 ± 30.022	35.674	2.635	0.012
$\mathbf{CG} \mathbf{sal.} imes \mathbf{Comp.}$	141.002 ± 22.163	7306.961	6.362	< 0.001
Hist. sal. \times CG sal. \times Comp.	-37.060 ± 7.827	7510.953	-4.735	< 0.001
$R_{fixed}^2 = 0.1112, R_{total}^2 = 0.1880$				

Table S4-a: Summary regression analysis for the combined data set of Spirostomum teres reared in the absence and presence of competing species during the common garden. Regression slope (β) \pm standard error (SE), degrees of freedom (df), test statistic (t-value) and p-value are given for biomass (quantified as bio-area), cell shape (quantified as cell size ratio), and dispersal ability (quantified as gross speed) for S. teres reared in the absence and presence of competition obtained during the common garden. Historical salinity (Hist. sal.) refers to the salinity used in the selection phase. Historical competition (Comp.) refers to the absence or presence of competing species during the selection phase. Common garden salinity environment (CG sal.) refers to the salinity used in the common garden. Density refers to the intraspecific density of the species. Biofraction (Biofrac.) P. aurelia refers to the proportional biomass of the competitor species P. aurelia. A total of n = 1390 data points were used for this analysis. Significant effects (p < 0.05) are highlighted in bold. R^2 values report the variation explained by the fixed effects (R_{fixed}^2) and by both fixed and random effects (R_{total}^2) for the three traits (detailed in Methods).

Biomass	eta	df	<i>t</i> -value	<i>p</i> -value
Hist. sal.	-347.106 ± 809.848	17.288	-0.429	0.674
CG sal.	-14.446 ± 182.467	46.711	-0.079	0.937
Comp.	365.062 ± 1393.689	113.017	0.262	0.794
Biofrac. P. aurelia	-2882.272 ± 1093.457	531.744	-2.636	0.009
Density	-45.023 ± 27.491	355.691	-1.638	0.102
Hist. sal. \times CG sal.	320.486 ± 240.219	35.150	1.334	0.191
Hist. sal. \times Comp.	-1701.200 ± 1724.591	67.551	-0.986	0.327
CG sal. \times Comp.	598.296 ± 575.862	1203.044	1.039	0.299
Hist. sal. \times CG sal. \times Comp.	-392.069 ± 986.731	1048.913	-0.397	0.691
$\underline{\qquad} R_{fixed}^2 = 0.0956, R_{total}^2 = 0.226$	3			
Cell shape	$\beta \pm SE$	df	<i>t</i> -value	<i>p</i> -value
Hist. sal.	0.691 ± 0.605	17.293	1.141	0.269
CG sal.	-0.079 ± 0.114	48.669	-0.697	0.489
Comp.	1.216 ± 0.852	71.022	1.427	0.158
Biofrac. P. aurelia	-0.723 ± 0.615	761.608	-1.176	0.240
Density	0.017 ± 0.015	723.380	1.117	0.264
Hist. sal. \times CG sal.	0.010 ± 0.153	37.144	0.067	0.947
Hist. sal. \times Comp.	-2.535 ± 1.094	40.828	-2.318	0.026
$CG al. \times Comp.$	0.085 ± 0.314	1318.951	0.271	0.787
Hist. sal. \times CG sal. \times Comp.	0.246 ± 0.543	1212.736	0.453	0.651
$R_{fixed}^2 = 0.0677, R_{total}^2 = 0.313$	1			

$Dispersal \ ability$	$\beta \pm SE$	df	t-value	p-value
Hist. sal.	2.708 ± 42.385	16.880	0.064	0.950
CG sal.	1.682 ± 11.478	45.147	0.147	0.884
Comp.	-12.814 ± 72.470	95.401	-0.177	0.860
Biofrac. P. aurelia	64.084 ± 58.673	360.126	1.092	0.275
Density	1.485 ± 1.541	694.772	0.964	0.336
Hist. sal. \times CG sal.	9.950 ± 15.473	34.450	0.643	0.524
Hist. sal. \times Comp.	-113.832 ± 88.075	59.904	-1.292	0.201
$CG sal. \times Comp.$	15.753 ± 31.286	1241.237	0.504	0.615
Hist. sal. \times CG sal. \times Comp.	19.026 ± 53.545	1090.019	0.355	0.722
$R_{fixed}^2 = 0.0139, R_{total}^2 = 0.142$	27			

Table S4-b: CONTINUE TABLE S4

Table S5-a: Summary regression analysis for the partitioning of (ancestral) plasticity, mean trait evolution and evolution of plasticity of temporal trait change in *Paramecium aurelia* between the ancestral population of the selection phase (day 4) and each selected population evolved in the absence of competing species (given by historical salinity, i.e. the salinity used during the selection phase). Salinity gives the plasticity response to the salt concentration used in the common garden (given by the columns). Time reflects genetic trait change between the ancestral and selected population in the common garden (CG) salt concentration environment 0.5 g/l. Interaction between salinity and time reflect evolution of phenotypic plasticity between the ancestral and selected population. Density reflects intraspecific density of the species. Regression slope (β) \pm standard error (SE), degrees of freedom (df), test statistic (t-value) and p-value are given for biomass (quantified as bio-area), cell shape (quantified as aspect ratio), and dispersal ability (quantified as gross speed). Significant effects (p < 0.05) are highlighted in bold.

Hist. sal.		CG salinity 1 g/l		CG salinity 2 g/l	
	Biomass	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	<i>p</i> -value
	Salinity	-241.06 ± 156.58	0.162	-62.64055 ± 222.7373	0.7832
0	Time	-1620.63 ± 192.85	< 0.001	-1802.435 ± 334.2759	< 0.001
0	$Sal \times Time$	363.37 ± 195.49	0.096	301.3565 ± 302.8968	0.341
	Density	12.91 ± 4.30	0.015	9.294269 ± 8.390000	0.292
	Salinity	-183.46 ± 223.15	0.433	-146.24482 ± 247.9071	0.567
0.5	Time	-1749.8741 ± 317.6903	< 0.001	-1872.331 ± 442.4827	0.001
0.5	$Sal \times Time$	235.0883 ± 277.8622	0.418	284.4757 ± 301.9861	0.365
	Density	7.46468 ± 7.574856	0.351	3.812483 ± 11.428733	0.745
	Salinity	-369.2948 ± 321.9744	0.277	-236.35233 ± 301.8192	0.460
1	Time	-1119.1297 ± 514.1199	0.053	-1138.969 ± 628.6511	0.110
1	$Sal \times Time$	539.7907 ± 451.4140	0.260	316.0681 ± 378.7379	0.427
	Density	15.82679 ± 11.530099	0.202	15.887997 ± 14.273434	0.302
	Salinity	-222.9073 ± 256.8702	0.448	-156.98655 ± 432.6351	0.726
2	Time	-976.5064 ± 452.5327	0.099	-1257.833 ± 932.2956	0.212
2	$Sal \times Time$	462.9180 ± 385.8129	0.271	484.6132 ± 549.4663	0.399
	Density	10.91939 ± 8.913830	0.308	5.109899 ± 20.469520	0.809
	Salinity	-181.1905 ± 192.6860	0.370	-201.78841 ± 198.0149	0.338
4	Time	-1013.3876 ± 295.5224	0.006	-1202.540 ± 399.7508	0.014
4	$Sal \times Time$	-92.5375 ± 256.3023	0.725	348.7417 ± 259.3491	0.206
	Density	14.50652 ± 6.681975	0.061	11.768565 ± 9.384693	0.242

Hist. sal.		CG salinity 1 g/l		CG salinity 2 g/l	
	Cell shape	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	p-value
	Salinity	0.11 ± 0.10	0.317	0.03 ± 0.10	0.769
0	Time	0.39 ± 0.12	0.008	0.25 ± 0.14	0.102
0	$Sal \times Time$	-0.17 ± 0.13	0.196	0.02 ± 0.13	0.854
	Density	$-5.69e-03 \pm 2.76e-03$	0.062	$-1.02e-02 \pm 3.59e-03$	0.014
	Salinity	0.12 ± 0.18	0.512	0.05 ± 0.15	0.731
0.5	Time	0.50 ± 0.25	0.072	0.39 ± 0.26	0.155
0.5	$Sal \times Time$	-0.04 ± 0.22	0.846	-0.31 ± 0.18	0.109
	Density	$-6.97e-03 \pm 6.10e-03$	0.276	$-1.01e-02 \pm 6.70e-03$	0.158
	Salinity	0.12 ± 0.16	0.472	$5.50e-03 \pm 1.74e-01$	0.975
1	Time	0.45 ± 0.26	0.109	0.53 ± 0.36	0.171
T	$Sal \times Time$	-0.28 ± 0.23	0.262	-0.28 ± 0.23	0.262
	Density	$-5.76e-03 \pm 5.99e-03$	0.356	$-3.98e-03 \pm 8.16e-03$	0.637
	Salinity	0.12 ± 0.22	0.608	0.01 ± 0.24	0.953
9	Time	0.47 ± 0.38	0.246	0.54 ± 0.53	0.335
2	$Sal \times Time$	-0.30 ± 0.28	0.309	-0.54 ± 0.30	0.105
	Density	$-6.90e-03 \pm 7.84e-03$	0.406	$-5.25e-03 \pm 1.17e-02$	0.664
	Salinity	0.11 ± 0.10	0.287	0.03 ± 0.11	0.795
4	Time	0.47 ± 0.15	0.010	0.46 ± 0.21	0.054
4	$Sal \times Time$	-0.12 ± 0.13	0.395	-0.14 ± 0.13	0.308
	Density	$-6.60e-03 \pm 3.58e-03$	0.096	$-7.01e-03 \pm 4.98e-03$	0.189

Table S5-b:CONTINUE TABLE S5.

Hist. sal.		CG salinity 1 g/l		CG salinity 2	g/l
	Dispersal ability	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	<i>p</i> -value
	Salinity	135.54 ± 158.81	0.412	72.94 ± 114.80	0.536
0	Time	28.39 ± 190.91	0.884	-126.33 ± 173.90	0.482
0	$\operatorname{Sal} \times \operatorname{Time}$	-255.24 ± 192.41	0.211	-178.53 ± 157.41	0.279
	Density	-13.66 ± 4.23	0.008	-18.23 ± 4.36	0.001
	Salinity	72.12 ± 150.89	0.642	-12.00 ± 130.73	0.928
0.5	Time	182.42 ± 213.58	0.410	157.42 ± 231.9	0.510
0.5	$Sal \times Time$	10.48 ± 184.85	0.956	-278.37 ± 158.42	0.104
	Density	-8.05 ± 5.13	0.143	-8.78 ± 6.00	0.169
	Salinity	-43.11 ± 158.46	0.790	-2.82 ± 171.10	0.987
1	Time	478.87 ± 253.81	0.082	241.75 ± 350.82	0.506
1	$\operatorname{Sal} \times \operatorname{Time}$	-156.17 ± 227.09	0.505	-156.17 ± 227.09	0.505
	Density	-4.72 ± 5.803	0.432	-10.02 ± 8.02	0.239
	Salinity	72.69 ± 112.12	0.555	-22.94 ± 149.08	0.882
2	Time	508.44 ± 189.48	0.055	541.91 ± 318.95	0.134
2	$\operatorname{Sal} \times \operatorname{Time}$	-193.82 ± 146.96	0.245	-470.55 ± 185.42	0.036
	Density	-8.11 ± 3.91	0.113	-7.36 ± 7.03	0.332
	Salinity	91.839 ± 119.19	0.458	-40.45 ± 142.02	0.782
4	Time	465.80 ± 181.23	0.027	399.58 ± 278.26	0.181
4	$\operatorname{Sal} \times \operatorname{Time}$	-253.25 ± 157.49	0.138	-46.37 ± 174.77	0.796
	Density	-4.85 ± 4.31	0.289	-5.02 ± 6.59	0.464

Table S5-c:CONTINUE TABLE S5.

Table S6-a: Summary regression analysis for the partitioning of (ancestral) plasticity, mean trait evolution and evolution of plasticity of temporal trait change in *Paramecium aurelia* between the ancestral population of the selection phase (day 4) and each selected population evolved in the presence of competing species (given by historical salinity, i.e. the salinity used during the selection phase). Salinity gives the plasticity response to the salt concentration used in the common garden (given by the columns). Time reflects genetic trait change between the ancestral and selected population in the common garden (CG) salt concentration environment 0.5 g/l. Interaction between salinity and time reflect evolution of phenotypic plasticity between the ancestral and selected population. Density reflects intraspecific density of the species. Regression slope (β) \pm standard error (SE), degrees of freedom (df), test statistic (t-value) and p-value are given for biomass (quantified as bio-area), cell shape (quantified as aspect ratio), and dispersal ability (quantified as gross speed). Significant effects (p < 0.05) are highlighted in bold.

Hist. sal.		CG salinity 1 g/l		CG salinity 2	2 g/l
	Biomass	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	<i>p</i> -value
	Salinity	-289.26 ± 325.57	0.395	-242.77 ± 279.70	0.406
0	Time	-948.71 ± 414.39	0.044	-930.59 ± 388.68	0.037
0	$Sal \times Time$	-221.60 ± 396.35	0.588	-236.55 ± 334.89	0.496
	Density	16.32 ± 9.89	0.129	16.75 ± 9.64	0.112
	Salinity	-218.20 ± 169.26	0.235	-159.61 ± 205.89	0.457
0.5	Time	-1572.16 ± 244.65	< 0.001	-1755.29 ± 332.92	< 0.001
0.5	$Sal \times Time$	317.96 ± 208.23	0.160	474.88 ± 251.19	0.085
	Density	11.07 ± 5.52	0.081	5.79 ± 7.91	0.480
	Salinity	-195.17 ± 284.61	0.509	-137.98 ± 240.43	0.580
1	Time	-1217.66 ± 398.11	0.012	-1404.88 ± 360.53	0.003
1	$Sal \times Time$	129.51 ± 344.74	0.714	129.51 ± 344.74	0.714
	Density	8.24 ± 9.33	0.398	2.74 ± 8.55	0.755
	Salinity	-198.11 ± 251.64	0.448	-191.04 ± 186.59	0.330
า	Time	-1367.81 ± 318.34	0.001	-1307.21 ± 310.18	0.001
2	$Sal \times Time$	75.92 ± 301.04	0.805	752.47 ± 237.40	0.008
	Density	8.61 ± 7.59	0.280	10.37 ± 8.43	0.243
	Salinity	-205.07 ± 155.49	0.227	-182.73 ± 187.12	0.358
4	Time	-1854.25 ± 259.76	< 0.001	-1896.99 ± 393.09	< 0.001
4	$Sal \times Time$	251.42 ± 204.80	0.244	344.83 ± 241.64	0.181
	Density	10.33 ± 5.27	0.092	9.22 ± 8.79	0.323

Hist. sal.		CG salinity 1 g/l		CG salinity 2 g/l	
	Cell shape	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	<i>p</i> -value
	Salinity	0.09 ± 0.16	0.591	$-4.73e-03 \pm 1.40e-01$	0.974
0	Time	-0.05 ± 0.20	0.823	$1.90e-04 \pm 0.19$	0.999
0	$Sal \times Time$	0.11 ± 0.19	0.586	0.29 ± 0.17	0.110
	Density	$-4.04e-03 \pm 4.84e-03$	0.419	$-2.59e-03 \pm 4.81e-03$	0.599
	Salinity	0.13 ± 0.12	0.293	0.03 ± 0.12	0.810
05	Time	0.15 ± 0.17	0.403	0.18 ± 0.20	0.394
0.3	$Sal \times Time$	-0.16 ± 0.14	0.274	-0.08 ± 0.15	0.621
	Density	$-7.97e-03 \pm 3.91e-03$	0.068	$-7.28e-03 \pm 4.72e-03$	0.150
	Salinity	0.10 ± 0.15	0.526	0.03 ± 0.13	0.791
1	Time	0.11 ± 0.20	0.601	$2.99e-03 \pm 0.19$	0.988
L	$Sal \times Time$	-0.08 ± 0.18	0.667	-0.08 ± 0.18	0.667
	Density	$-4.73e-03 \pm 4.80e-03$	0.344	$-7.84e-03 \pm 4.48e-03$	0.105
	Salinity	0.10 ± 0.12	0.426	0.02 ± 0.11	0.824
9	Time	0.29 ± 0.15	0.068	0.24 ± 0.17	0.196
2	$Sal \times Time$	-0.13 ± 0.14	0.356	-0.19 ± 0.13	0.188
	Density	$-4.72e-03 \pm 3.50e-03$	0.202	$-6.45e-03 \pm 4.75e-03$	0.198
	Salinity	0.11 ± 0.21	0.597	$8.80e-03 \pm 0.17$	0.959
4	Time	0.60 ± 0.33	0.097	0.67 ± 0.33	0.071
4	$Sal \times Time$	-0.24 ± 0.25	0.357	-0.13 ± 0.20	0.532
	Density	$-6.30e-03 \pm 7.12e-03$	0.395	$-4.42e-03 \pm 7.59-e03$	0.573
	Dispersal ability	$\beta \pm SE$	p-value	$\beta \pm SE$	<i>p</i> -value
	Salinity	54.27 ± 140.42	0.706	-50.98 ± 144.12	0.730
0	Time	-17.28 ± 178.49	0.925	74.43 ± 199.56	0.716
0	$Sal \times Time$	-20.30 ± 170.23	0.907	130.63 ± 171.65	0.461
	Density	-6.49 ± 4.25	0.153	-3.63 ± 4.94	0.476
	Salinity	109.84 ± 146.64	0.471	8.29 ± 169.17	0.962
0.5	Time	109.29 ± 207.36	0.610	110.71 ± 268.30	0.688
0.0	$Sal \times Time$	-178.24 ± 172.84	0.326	-133.22 ± 200.58	0.520
	Density	-11.39 ± 4.77	0.038	-11.48 ± 6.42	0.101
	Salinity	93.90 ± 125.44	0.471	0.78 ± 160.678	0.996
1	Time	69.04 ± 175.15	0.702	56.94 ± 237.10	0.815
Ŧ	$Sal \times Time$	-98.92 ± 150.93	0.526	-98.92 ± 150.93	0.526
	Density	-9.95 ± 4.11	0.036	-10.49 ± 5.62	0.088
	Salinity	72.30 ± 110.81	0.528	-41.88 ± 78.27	0.607
2	Time	154.05 ± 139.80	0.294	274.15 ± 129.70	0.0630
Δ	$Sal \times Time$	-157.60 ± 132.08	0.258	17.50 ± 99.31	0.864
	Density	-8.04 ± 3.34	0.035	-4.55 ± 3.53	0.228
	Salinity	75.69 ± 92.08	0.434	-18.70 ± 55.95	0.750
4	Time	482.95 ± 148.91	0.010	502.62 ± 121.40	0.003
T	$\operatorname{Sal} \times \operatorname{Time}$	-305.16 ± 113.57	0.022	-242.79 ± 75.84	0.010
	Density	-8.28 ± 3.14	0.029	-7.66 ± 2.67	0.025

Table S6-b:CONTINUE TABLE S6.

Table S7-a: Summary regression analysis for the partitioning of (ancestral) plasticity, mean trait evolution and evolution of plasticity of temporal trait change in *Spirostomum teres* between the ancestral population of the selection phase (day 4) and each selected population evolved in the absence of competing species (given by historical salinity, i.e. the salinity used during the selection phase). Salinity gives the plasticity response to the salt concentration used in the common garden (given by the columns). Time reflects genetic trait change between the ancestral and selected population in the common garden (CG) salt concentration environment 0.5 g/l. Interaction between salinity and time reflect evolution of phenotypic plasticity between the ancestral and selected population. Density reflects intraspecific density of the species. Regression slope (β) \pm standard error (SE), degrees of freedom (df), test statistic (*t*-value) and *p*-value are given for biomass (quantified as bio-area), cell shape (quantified as aspect ratio), and dispersal ability (quantified as gross speed). Significant effects (p < 0.05) are highlighted in bold.

Hist. sal.		CG salinity 1 g/l		CG salinity 2 g/l	
	Biomass	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	<i>p</i> -value
	Salinity	835.89 ± 741.38	0.279	1607.80 ± 799.60	0.070
0	Time	1559.84 ± 745.73	0.049	2237.93 ± 872.10	0.023
0	$Sal \times Time$	-292.33 ± 1017.07	0.779	-1537.39 ± 1025.80	0.159
	Density	-39.66 ± 30.14	0.216	-21.06 ± 33.13	0.539
	Salinity	1333.30 ± 916.04	0.168	1603.51 ± 973.12	0.125
0.5	Time	1850.07 ± 867.08	0.050	1754.87 ± 950.20	0.088
0.5	$Sal \times Time$	-1053.61 ± 1115.65	0.361	-1775.30 ± 1199.75	0.165
	Density	-21.91 ± 35.46	0.548	-30.95 ± 40.52	0.460
	Salinity	1235.72 ± 1034.69	0.252	1604.30 ± 804.76	0.067
1	Time	1625.88 ± 963.06	0.113	1818.88 ± 781.22	0.034
1	$Sal \times Time$	-579.29 ± 1249.50	0.650	-747.49 ± 983.72	0.460
	Density	-42.80375 ± 40.18151	0.306	-21.57503 ± 32.26167	0.516
	Salinity	1362.90 ± 766.80	0.108	1571.81 ± 761.63	0.069
n	Time	1723.06 ± 771.42	0.049	1512.59 ± 796.95	0.085
2	$Sal \times Time$	-885.15 ± 965.82	0.382	-717.63 ± 980.73	0.482
	Density	-15.80 ± 29.98	0.612	-33.01 ± 31.09	0.316
	Salinity	1299.49 ± 327.93	< 0.001	1592.31 ± 737.58	0.110
4	Time	561.30 ± 648.84	0.388	401.01 ± 1253.06	0.763
4	$Sal \times Time$	-2386.09 ± 819.32	0.004	-507.11 ± 1595.26	0.760
	Density	-18.60 ± 11.79	0.116	-28.17 ± 31.41	0.433

Table S7-b:	CONTINUE TABLE S7
-------------	-------------------

Hist. sal.		CG salinity 1	g/l	CG salinity 2	g/l
	Cell shape	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	<i>p</i> -value
	Salinity	-0.04 ± 13.17	0.901	-0.09 ± 6.80	0.705
0	Time	-0.67 ± 0.36	0.074	-0.70 ± 0.29	0.031
0	$Sal \times Time$	-0.06 ± 0.46	0.905	0.22 ± 0.32	0.512
	Density	0.01 ± 0.01	0.393	$7.93e-03 \pm 9.44e-03$	0.434
	Salinity	-0.10 ± 13.47	0.892	-0.12 ± 12.64	0.868
0.5	Time	0.59 ± 0.68	0.400	0.65 ± 0.70	0.367
0.5	$Sal \times Time$	0.07 ± 0.88	0.939	-0.17 ± 0.88	0.855
	Density	$6.17e-03 \pm 2.81e-02$	0.830	0.01 ± 0.03	0.698
	Salinity	-0.09 ± 13.18	0.858	-0.11 ± 12.87	0.822
1	Time	0.09 ± 0.48	0.848	0.19 ± 0.45	0.673
1	$Sal \times Time$	-0.26 ± 0.62	0.683	0.27 ± 0.56	0.641
	Density	$6.28e-03 \pm 1.98e-02$	0.757	0.02 ± 0.02	0.438
	Salinity	-0.05 ± 11.49	0.922	-0.11 ± 9.86	0.865
2	Time	0.09 ± 0.48	0.858	0.10 ± 0.66	0.879
2	$Sal \times Time$	-0.39 ± 0.60	0.530	0.09 ± 0.82	0.917
	Density	0.01 ± 0.02	0.454	0.02 ± 0.03	0.468
	Salinity	-0.06 ± 2.52	0.881	-0.11 ± 203.00	0.591
4	Time	1.701 ± 0.61	0.049	1.64 ± 0.46	< 0.001
4	$Sal \times Time$	-2.71 ± 0.76	0.020	-2.05 ± 0.71	0.004
	Density	$7.11e-03 \pm 1.37e-02$	0.658	$3.51e-03 \pm 8.33e-03$	0.674
	Dispersal ability	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	<i>p</i> -value
	Salinity	-9.22 ± 35.11	0.798	31.56 ± 35.38	0.393
0	Time	71.66 ± 34.71	0.054	96.77 ± 38.57	< 0.001
0	$Sal \times Time$	32.42 ± 48.54	0.520	-1.96 ± 45.37	0.966
	Density	-0.75 ± 1.44	0.615	0.19 ± 1.47	0.898
	Salinity	5.18 ± 37.84	0.893	30.67 ± 48.55	0.539
0.5	Time	181.81 ± 36.21	< 0.001	182.19 ± 47.57	< 0.001
0.5	$Sal \times Time$	-15.94 ± 45.86	0.733	-74.56 ± 59.85	0.235
	Density	-0.20 ± 1.43	0.894	-0.11 ± 2.02	0.956
	Salinity	0.97 ± 37.24	0.980	33.88 ± 30.32	0.285
1	Time	105.53 ± 34.87	0.008	122.39 ± 30.03	< 0.001
T	$Sal \times Time$	3.43 ± 44.84	0.940	0.24 ± 36.98	0.995
	Density	-0.91 ± 1.42	0.535	0.54 ± 1.20	0.664
	Salinity	6.56 ± 40.81	0.876	30.83 ± 39.80	0.458
2	Time	147.37 ± 40.93	0.004	143.79 ± 41.30	0.005
2	$Sal \times Time$	-38.97 ± 51.41367	0.466	-44.52 ± 51.16	0.405
	Density	0.15 ± 1.60	0.929	-0.15 ± 1.63	0.930
	Salinity	6.58 ± 12.55	0.600	32.26 ± 16.33	0.123
1	Time	83.96 ± 24.83	< 0.001	84.35 ± 31.77	0.027
4	$Sal \times Time$	-55.74 ± 31.35	0.077	-20.83 ± 46.09	0.656
	Density	-0.27 ± 0.45	0.543	-0.23 ± 0.67	0.748

Table S8-a: Summary regression analysis for the partitioning of (ancestral) plasticity, mean trait evolution and evolution of plasticity of temporal trait change in *Spirostomum teres* between the ancestral population of the selection phase (day 4) and each selected population evolved in the presence of competing species (given by historical salinity, i.e. the salinity used during the selection phase). Salinity gives the plasticity response to the salt concentration used in the common garden (given by the columns). Time reflects genetic trait change between the ancestral and selected population in the common garden (CG) salt concentration environment 0.5 g/l. Interaction between salinity and time reflect evolution of phenotypic plasticity between the ancestral and selected population. Density reflects intraspecific density of the species. Regression slope (β) \pm standard error (SE), degrees of freedom (df), test statistic (*t*-value) and *p*-value are given for biomass (quantified as bio-area), cell shape (quantified as aspect ratio), and dispersal ability (quantified as gross speed). Significant effects (p < 0.05) are highlighted in bold.

Hist. sal.		CG salinity 1	g/l	CG salinity 2 g	g/l
	Biomass	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	<i>p</i> -value
	Salinity	1297.25 ± 340.95	< 0.001	1593.73 ± 786.76	0.139
0	Time	1203.97 ± 742.82	0.107	1154.38 ± 1166.28	0.358
0	$Sal \times Time$	601.41 ± 1174.61	0.609	-2010.34 ± 1475.91	0.206
	Density	-18.76 ± 12.25	0.128	-29.15 ± 33.55	0.455
	Salinity	1336.45 ± 1044.22	0.241	1593.88 ± 694.81	0.072
0.5	Time	-668.54 ± 1333.89	0.627	-696.15 ± 990.36	0.499
0.5	$Sal \times Time$	-1458.95 ± 1479.74	0.348	-563.55 ± 1158.66	0.638
	Density	-21.55 ± 42.82	0.631	-25.61 ± 29.30	0.426
	Salinity	1298.83 ± 337.98	< 0.001	1577.13 ± 664.33	0.069
1	Time	-1020.41 ± 711.72	0.153	-1203.23 ± 1183.01	0.342
1	$Sal \times Time$	-261.74 ± 918.48	0.776	-908.58 ± 1319.43	0.512
	Density	-18.65 ± 12.15	0.126	-28.97 ± 28.14	0.360
	Cell shape	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	<i>p</i> -value
	Salinity	-0.05 ± 2.79	0.897	-0.11 ± 201.00	0.612
0	Time	0.63 ± 0.60	0.313	0.62 ± 0.52	0.233
0	$Sal \times Time$	0.15 ± 0.91	0.873	0.16 ± 0.72	0.821
	Density	$7.51e-03 \pm 1.34e-02$	0.629	$4.00e-03 \pm 8.50e-03$	0.651
	Salinity	-0.09 ± 5.63	0.900	-0.12 ± 1.62	0.822
0.5	Time	-0.69 ± 0.90	0.467	-0.57 ± 0.65	0.439
0.5	$Sal \times Time$	-0.31 ± 1.00	0.768	0.35 ± 0.77	0.678
	Density	$7.43e-03 \pm 2.91e-03$	0.808	$8.54e-03 \pm 1.90e-02$	0.709
	Salinity	-0.06 ± 2.85	0.882	-0.11 ± 213.00	0.604
1	Time	-1.29 ± 0.63	0.089	-1.35 ± 0.50	0.007
T	$Sal \times Time$	0.82 ± 0.78	0.324	0.85 ± 0.56	0.130
	Density	$6.87e-03 \pm 1.34e-03$	0.656	$3.67e-03 \pm 8.48e-03$	0.666

Hist. sal.		CG salinity 1	l g/l	CG salinity 2	2 g/l
	Dispersal ability	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	<i>p</i> -value
	Salinity	4.33 ± 90.0	0.964	30.31 ± 87.62	0.750
0	Time	150.72 ± 108.36	0.238	154.66 ± 108.73	0.230
0	$\operatorname{Sal} \times \operatorname{Time}$	150.93 ± 137.86	0.330	-7.96 ± 127.94	0.953
	Density	-0.14 ± 3.76	0.97	0.089 ± 3.78	0.983
	Salinity	3.38 ± 63.81	0.962	29.98 ± 87.29	0.748
05	Time	192.86 ± 77.42	0.097	203.70 ± 104.94	0.111
0.0	$\operatorname{Sal} \times \operatorname{Time}$	-108.70 ± 86.64	0.310	-94.05 ± 120.98	0.472
	Density	-0.40 ± 2.64	0.893	-0.51 ± 3.73	0.898
	Salinity	6.66 ± 12.64	0.599	30.16 ± 61.95	0.654
1	Time	79.50 ± 26.62	0.003	77.54 ± 100.81	0.484
T	$Sal \times Time$	-35.79 ± 34.35	0.299	63.14 ± 110.86	0.598
	Density	-0.27 ± 0.45	0.554	-0.30 ± 2.68	0.915

Table S8-b:CONTINUE TABLE S8

Table S9: Summary of regression analysis for the phenotypic plasticity response to salinity of *Paramecium aurelia* garden (given by the columns). Density reflects intraspecific density of the species. Regression slope (β) \pm standard error (SE), degrees evolved in the absence of competing species. Salinity gives the plasticity response to the salt concentration used in the common of freedom (df), test statistic (t-value) and p-value are given for biomass (quantified as bio-area), cell shape (quantified as aspect ratio), and dispersal ability (quantified as gross speed). Significant effects (p < 0.05) are highlighted in bold.

Hist. sal.		CG salinity 1	. g/l	CG salinity 2	2 g/l	CG salinity 4	g/l
	Biomass	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	p-value	$\beta \pm SE$	<i>p</i> -value
	Salinity	-209.17 ± 189.06	0.343	-196.89 ± 230.89	0.457	$NA \pm NA$	NA
AIIC.	Density	10.49 ± 6.51	0.204	11.01 ± 11.20	0.394	$NA \pm NA$	NA
	Salinity	114.80 ± 51.36	0.026	221.02 ± 58.95	< 0.001	$NA \pm NA$	NA
D	Density	6.71 ± 5.11	0.193	7.92 ± 3.12	0.031	$NA \pm NA$	NA
ы С	$\operatorname{Salinity}$	-57.16 ± 62.55	0.361	91.60 ± 56.93	0.108	$NA \pm NA$	NA
0.0	Density	-38.98 ± 12.60	0.002	46.38 ± 32.88	0.167	$NA \pm NA$	NA
-	Salinity	256.21 ± 138.41	0.065	245.66 ± 136.72	0.075	1645.87 ± 388.36	< 0.001
-	Density	66.71 ± 77.48	0.390	-46.56 ± 63.98	0.470	333.40 ± 124.59	0.030
c	Salinity	327.04 ± 213.28	0.131	582.67 ± 183.84	0.002	383.58 ± 229.41	0.098
N	Density	357.65 ± 247.78	0.166	-129.18 ± 63.77	0.051	-16.89 ± 132.36	0.899
	Salinity	-390.23 ± 90.74	< 0.001	113.08 ± 88.38	0.202	238.35 ± 88.15	0.007
1	Density	64.71 ± 12.91	< 0.001	-1.89 ± 21.04	0.929	4.78 ± 17.84	0.789

Hist. sal.		CG salinity 1 g	5/1	CG salinity 2 g	3/1	CG salinity 4 §	g/l
	Cell shape	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	<i>p</i> -value
Vec	Salinity	0.12 ± 0.12	0.415	0.03 ± 0.12	0.811	$NA \pm NA$	NA
AIIC.	Density	$-6.49e-03 \pm 4.30e-03$	0.227	$7.47e-03 \pm 5.85e-03$	0.290	$NA \pm NA$	NA
	Salinity	-0.09 ± 0.04	0.045	$4.44e-03 \pm 4.35e-02$	0.919	$NA \pm NA$	NA
D	Density	$4.72e-03 \pm 5.11e-03$	0.383	$-7.17e-03 \pm 5.60e-03$	0.233	$NA \pm NA$	NA
	Salinity	0.08 ± 0.05	0.115	-0.28 ± 0.05	< 0.001	$NA \pm NA$	NA
0.0	Density	$-8.09e-03 \pm 9.99e-03$	0.418	-0.08 ± 0.02	0.005	$NA \pm NA$	NA
	Salinity	-0.22 ± 0.09	0.020	-0.24 ± 0.09	0.014	-0.71 ± 0.26	0.009
-1	Density	0.08 ± 0.05	0.129	0.06 ± 0.04	0.105	0.16 ± 0.07	0.06
¢	Salinity	-0.39 ± 0.13	0.003	-0.47 ± 0.11	< 0.001	-0.34 ± 0.15	0.025
V	Density	-0.29 ± 0.14	0.054	-0.04 ± 0.04	0.380	-0.09 ± 0.08	0.276
	Salinity	0.02 ± 0.06	0.779	-0.09 ± 0.06	0.140	-0.50 ± 0.05	< 0.001
1	Density	$5.69e-04 \pm 0.01$	0.967	-0.02 ± 0.01	0.015	$7.46e-04 \pm 8.97e-03$	0.935
	Dispersal ability	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	<i>p</i> -value
V no	Salinity	69.95 ± 66.94	0.371	-26.03 ± 65.11	0.716	$NA \pm NA$	NA
AIIC.	Density	-7.82 ± 2.33	0.044	-6.88 ± 3.13	0.113	$NA \pm NA$	NA
	Salinity	-125.29 ± 44.58	0.005	-46.28 ± 41.45	0.265	$NA \pm NA$	NA
D	Density	13.20 ± 6.04	0.037	-24.19 ± 4.70	< 0.001	$NA \pm NA$	NA
и С	Salinity	48.01 ± 50.82	0.345	-326.41 ± 42.47	< 0.001	$NA \pm NA$	NA
0.0	Density	-22.02 ± 10.41	0.035	-34.54 ± 19.19	0.093	$NA \pm NA$	NA
	Salinity	85.23 ± 95.53	0.374	-91.78 ± 84.23	0.280	-368.40 ± 298.43	0.224
4	Density	-5.08 ± 53.18	0.924	-47.10 ± 34.20	0.188	-46.88 ± 106.38	0.673
c د	Salinity	-196.43 ± 98.36	0.049	-425.71 ± 103.07	< 0.001	-556.01 ± 83.89	< 0.001
J	Density	-77.97 ± 81.02	0.339	-31.88 ± 34.52	0.366	-50.20 ± 50.42	0.329
Ţ	Salinity	-219.34 ± 63.28	< 0.001	-85.77 ± 62.29	0.170	-402.96 ± 49.64	< 0.001
4	Density	10.75 ± 9.82	0.280	4.88 ± 15.38	0.756	-9.85 ± 7.81	0.209

 Table S9-b: CONTINUE TABLE S9.

of regression analysis for the phenotypic plasticity response to salinity of <i>Paramecium aurelia</i>	of competing species. Salinity gives the plasticity response to the salt concentration used in the common	ns). Density reflects intraspecific density of the species. Regression slope (β) \pm standard error (SE), degrees	ic $(t$ -value) and p -value are given for biomass (quantified as bio-area), cell shape (quantified as aspect ratio),	tified as gross speed). Significant effects $(p < 0.05)$ are highlighted in bold.
Table S10-a: Summary of regression analysis f	evolved in the presence of competing species.	garden (given by the columns). Density reflects intra-	of freedom (df), test statistic $(t-value)$ and $p-value$ ar	and dispersal ability (quantified as gross speed). Sig

1 g/l	<i>p</i> -value	0.704	0.488	NA	NA	NA	NA	0.025	0.649	< 0.001	0.640	0.001	0.164		
CG salinity 2	$\beta \pm SE$	182.53 ± 292.05	-13.66 ± 5.12	$NA \pm NA$	$NA \pm NA$	$NA \pm NA$	$NA \pm NA$	686.69 ± 301.02	12.14 ± 23.93	516.94 ± 84.43	-4.59 ± 9.80	398.24 ± 108.91	-39.17 ± 23.74		
2 g/l	<i>p</i> -value	0.700	0.065	< 0.001	0.303	< 0.001	0.075	0.014	0.091	< 0.001	0.528	0.054	0.508		
CG salinity	$\beta \pm SE$	66.28 ± 155.33	-14.19 ± 5.56	-521.42 ± 74.93	5.92 ± 5.67	371.18 ± 79.28	-11.69 ± 6.50	203.40 ± 82.49	-10.07 ± 5.91	492.68 ± 78.56	-8.23 ± 13.01	219.59 ± 113.71	-12.46 ± 18.78		
1 g/l	<i>p</i> -value	0.678	< 0.001	< 0.001	0.002	0.004	0.021	0.136	0.369	< 0.001	< 0.001	0.873	0.459		
CG salinity	$\beta \pm SE$	41.73 ± 100.32	-14.67 ± 3.55	-532.25 ± 71.05	24.36 ± 7.78	262.30 ± 89.13	-37.41 ± 16.67	-114.39 ± 76.60	11.58 ± 12.84	-270.57 ± 76.94	26.06 ± 7.44	16.94 ± 105.32	14.33 ± 18.43		
	Biomass	Salinity	Density	Salinity	Density	$\operatorname{Salinity}$	Density	Salinity	Density	Salinity	Density	Salinity	Density		
Hist. sal.		~~~V	AllC.	C			0.0	-	-	c	7	-	1		

		CG salinity 1	g/1	CG salinity 2	g/l	CG salinity 4 g	/1
Cell shape $\beta \pm SE$	$\beta \pm SE$		p-value	$\beta \pm SE$	p-value	$\beta \pm SE$	p-value
Salinity -0.02 ± 0.11	-0.02 ± 0.11		0.893	0.05 ± 0.03	0.093	-0.11 ± 0.19	0.613
Density $2.14e-03 \pm 3.96e-03$	$2.14e-03 \pm 3.96e-03$		0.626	$4.28e-04 \pm 1.34e-03$	0.751	$6.64e-04 \pm 3.64e-03$	0.873
Salinity $0.18 \pm 0.04 <$	$0.18 \pm 0.04 <$	\vee	0.001	0.32 ± 0.05	< 0.001	$NA \pm NA$	NA
Density 2.03e-03 \pm 4.30e-03	$2.03e-03 \pm 4.30e-03$		0.638	$-9.00e-03 \pm 4.21e-03$	0.034	$NA \pm NA$	NA
Salinity -0.06 ± 0.06	-0.06 ± 0.06		0.248	-0.10 ± 0.05	0.028	$NA \pm NA$	NA
Density $ -1.16e-03 \pm 9.05e-03 $	$-1.16e-03 \pm 9.05e-03$		0.650	$7.11e-04 \pm 3.83e-03$	0.853	$NA \pm NA$	NA
Salinity 0.03 ± 0.04	0.03 ± 0.04		0.405	0.03 ± 0.04	0.412	-0.57 ± 0.16	< 0.001
Density $0.67e-03 \pm 0.72e-03$	$6.67e-03 \pm 6.72e-03$		0.324	$-5.29e-03 \pm 2.98e-03$	0.077	$-9.71e-03 \pm 1.80e-02$	0.615
Salinity -0.04 ± 0.04	-0.04 ± 0.04		0.345	-0.15 ± 0.04	< 0.001	-0.46 ± 0.05	< 0.001
Density $ -5.58e-03 \pm 3.78e-03 $	$-5.58e-03 \pm 3.78e-03$		0.144	$2.78e-03 \pm 7.47e-03$	0.710	$2.33e-03 \pm 5.29e-03$	0.660
Salinity -0.18 ± 0.09	-0.18 ± 0.09		0.033	-0.16 ± 0.08	0.835	-0.22 ± 0.08	0.013
Density 0.02 ± 0.02	0.02 ± 0.02		0.227	0.02 ± 0.01	0.507	-0.03 ± 0.02	0.236
Dispersal ability $\beta \pm SE p$	$\beta \pm SE$	l	<i>p</i> -value	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	<i>p</i> -value
Salinity 42.30 ± 93.07	42.30 ± 93.07		0.680	-50.73 ± 45.65	0.348	-109.05 ± 51.07	0.033
Density 1.48 ± 3.35	1.48 ± 3.35		0.687	0.08 ± 1.58	0.961	0.53 ± 0.82	0.514
Salinity 10.12 ± 36.86	10.12 ± 36.86		0.784	64.68 ± 42.51	0.129	$NA \pm NA$	NA
Density 0.50 ± 4.02	0.50 ± 4.02		0.901	-2.51 ± 3.83	0.513	$NA \pm NA$	NA
Salinity 30.49 ± 51.58	30.49 ± 51.58		0.555	-121.90 ± 43.50	0.005	$NA \pm NA$	NA
Density -27.18 ± 8.75	-27.18 ± 8.75		0.003	-12.10 ± 3.68	0.001	$NA \pm NA$	NA
Salinity 45.74 ± 43.23	45.74 ± 43.23		0.291	17.66 ± 47.30	0.710	-681.62 ± 178.18	< 0.001
Density -19.17 ± 6.93	-19.17 ± 6.93		0.007	-5.65 ± 3.48	0.106	-36.63 ± 18.14	0.117
Salinity $-127.64 \pm 37.76 <$	$-127.64 \pm 37.76 <$	\vee	0.001	-28.12 ± 44.10	0.524	-480.26 ± 33.85	< 0.001
Density -8.05 ± 3.33	-8.05 ± 3.33		0.021	3.31 ± 6.62	0.617	-1.90 ± 3.82	0.621
Salinity -179.48 ± 89.49	-179.48 ± 89.49		0.049	-224.12 ± 75.99	0.003	-241.22 ± 67.45	0.001
Density -22.75 ± 17.34	-22.75 ± 17.34		0.210	-17.92 ± 10.42	0.087	-62.65 ± 12.27	0.046

 Table S10-b: CONTINUE TABLE S10.

regression analysis for the phenotypic plasticity response to salinity of Spirostomum teres	competing species. Salinity gives the plasticity response to the salt concentration used in the common). Density reflects intraspecific density of the species. Regression slope (β) \pm standard error (SE), degrees	(t-value) and $p-value$ are given for biomass (quantified as bio-area), cell shape (quantified as aspect ratio),	ed as gross speed). Significant effects $(p < 0.05)$ are highlighted in bold.
e S11-a: Summary of regression analy	ved in the absence of competing speci	on (given by the columns). Density reflects	edom (df), test statistic $(t-value)$ and $p-val$	lispersal ability (quantified as gross speed)
Tabl	evol	gard(of fre	and (

Traits CC Biomass CC	CC	$\frac{1}{\beta} = \frac{1}{2} \frac{1}{2} \frac{1}{2}$	g/l n-valme	CG salinity 2 β + SF	g/l <i>n</i> -value	CG salinity 4 g β + SF	s/l n-value
	Colimitas			$\frac{110}{10000} + \frac{1}{10000} + \frac{1}{10000} + \frac{1}{10000} + \frac{1}{10000} + \frac{1}{100000} + \frac{1}{100000} + \frac{1}{10000000000000000000000000000000000$	p^{-value}		D_vana
	Guinnee	1299.05 ± 541.49		1509.50 ± 0.001	171.0	$NA \pm NA$	NA
	Density	-18.59 ± 12.27	0.132	-29.21 ± 31.97	0.431	$NA \pm NA$	NA
	Salinity	332.90 ± 354.42	0.349	34.14 ± 408.09	0.933	-932.05 ± 1339.19	0.493
	Density	-194.27 ± 128.41	0.133	41.78 ± 102.95	0.688	-459.47 ± 247.54	0.134
	Salinity	146.86 ± 223.00	0.511	637.10 ± 311.48	0.042	1631.62 ± 771.44	0.040
	Density	22.78 ± 47.55	0.632	298.84 ± 70.81	< 0.001	181.47 ± 122.97	0.150
	Salinity	46.88 ± 265.36	0.860	1015.13 ± 281.91	< 0.001	448.46 ± 503.69	0.375
	Density	-210.64 ± 41.51	< 0.001	-41.92 ± 60.24	0.496	-184.08 ± 75.05	0.019
	Salinity	1006.50 ± 413.22	0.016	758.17 ± 411.12	0.067	852.59 ± 424.71	0.046
	Density	134.87 ± 79.70	0.095	-101.01 ± 84.08	0.236	-31.64 ± 62.10	0.611
	Salinity	-3780.74 ± 7186.62	1.000	1300.72 ± 2292.59	0.579	936.32 ± 1265.21	0.475
	Density	-5762.06 ± 11573.51	1.000	666.76 ± 1317.42	0.621	$NA \pm NA$	NA

Hist. sal.	Traits	CG salinity 1	g/l	CG salinity 2	g/l	CG salinity	4 g/l
	Cell shape	$\beta \pm SE$	p-value	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	<i>p</i> -value
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Salinity	-0.05 ± 0.34	0.894	-0.11 ± 0.22	0.604	$NA \pm NA$	NA
AIIC.	Density	$6.93e-03 \pm 1.30e-02$	0.644	$3.56e-03 \pm 8.57e-03$	0.679	$NA \pm NA$	NA
	Salinity	0.12 ± 0.142	0.369	0.21 ± 0.15	0.148	1.12 ± 0.42	0.017
Ο	Density	0.18 ± 0.05	< 0.001	0.09 ± 0.03	0.006	0.21 ± 0.07	0.030
ਮ ਵ	Salinity	0.14 ± 0.15	0.338	-0.09 ± 0.22	0.672	0.17 ± 0.55	0.762
0.0	Density	-0.13 ± 0.03	< 0.001	0.11 ± 0.05	0.033	0.13 ± 0.09	0.135
-	Salinity	-0.64 ± 0.13	< 0.001	0.19 ± 0.15	0.196	-0.29 ± 0.24	0.230
-1	Density	-0.03 ± 0.02	0.146	0.05 ± 0.04	0.186	0.02 ± 0.04	0.633
c	Salinity	-0.59 ± 0.18	< 0.001	-0.30 ± 0.17	0.081	0.66 ± 0.30	0.034
J	Density	$4.55e-03 \pm 3.45e-02$	0.895	-0.15 ± 0.04	< 0.001	0.26 ± 0.06	< 0.001
-	Salinity	-7.88 ± 4.88	1.000	-2.20 ± 1.55	0.177	-2.08 ± 3.63	0.578
4	Density	-10.71 ± 7.85	1.000	-0.155 ± 0.890	0.864	$NA \pm NA$	NA
	Dispersal ability	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	<i>p</i> -value
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Salinity	6.61 ± 12.22	0.589	32.25 ± 16.65	0.135	$NA \pm NA$	NA
AIIC.	Density	-0.27 ± 0.44	0.535	-0.23 ± 0.68	0.760	$NA \pm NA$	NA
	Salinity	13.79 ± 17.23	0.425	38.23 ± 19.72	0.055	-19.89 ± 68.64	0.775
D	Density	-2.27 ± 6.20	0.715	9.57 ± 5.07	0.067	-17.56 ± 14.19	0.265
	Salinity	-7.16 ± 14.58	0.623	-14.78 ± 19.19	0.442	45.32 ± 48.09	0.349
0.0	Density	0.43 ± 2.98	0.886	11.40 ± 4.35	0.009	14.11 ± 7.73	0.074
	Salinity	-22.35 ± 13.61	0.102	47.30 ± 14.34	0.001	42.21 ± 21.30	0.049
4	Density	-7.43 ± 2.06	< 0.001	7.03 ± 3.03	0.032	-0.17 ± 2.27	0.941
c	Salinity	-7.19 ± 21.84	0.742	-14.71 ± 20.16	0.467	9.47 ± 33.69	0.781
J	Density	5.14 ± 4.25	0.232	-1.24 ± 4.37	0.777	1.95 ± 6.42	0.766
r	Salinity	-511.84 ± 446.97	1.000	8.73 ± 36.30	0.813	78.19 ± 80.70	0.353
1	Density	-986.63 ± 729.50	1.000	-11.18 ± 24.14	0.650	$NA \pm NA$	NA

 Table S11-b: TABLE S11 CONTINUED

Hist. sal.	Traits	CG salinity 1	g/l	CG salinity 2 g	g/1	CG salinity 4 g	g/l
	Biomass	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	<i>p</i> -value
	Salinity	857.67 ± 1081.13	0.490	881.74 ± 594.28	0.147	$NA \pm NA$	NA
AllC.	Density	250.64 ± 249.12	0.373	132.81 ± 150.42	0.383	$NA \pm NA$	NA
	Salinity	3292.60 ± 814.65	0.004	733.12 ± 1713.16	0.686	$NA \pm NA$	NA
D	Density	253.64 ± 401.10	0.544	-159.87 ± 1182.46	0.900	$NA \pm NA$	NA
ы С	Salinity	23.57 ± 696.48	0.973	866.56 ± 626.02	0.178	3007.56 ± 1379.42	0.051
0.0	Density	-617.01 ± 284.15	0.071	62.46 ± 136.96	0.652	135.54 ± 784.23	0.875
-	Salinity	1261.89 ± 1497.84	0.412	1217.49 ± 1762.23	0.496	$NA \pm NA$	NA
-	Density	-717.43 ± 1607.49	0.661	466.69 ± 1490.24	0.757	$NA \pm NA$	NA
	Cell shape	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	<i>p</i> -value
	Salinity	0.19 ± 0.32	0.555	0.16 ± 0.36	0.652	$NA \pm NA$	NA
AllC.	Density	0.07 ± 0.08	0.388	$3.29e-03 \pm 9.05e-03$	0.997	$NA \pm NA$	NA
	Salinity	1.09 ± 0.67	0.139	1.14 ± 0.75	0.174	$NA \pm NA$	NA
D	Density	0.55 ± 0.32	0.123	0.67 ± 0.42	0.214	$NA \pm NA$	NA
	Salinity	-0.76 ± 0.40	0.060	-0.20 ± 0.71	0.791	-0.17 ± 0.90	0.851
0.0	Density	-0.27 ± 0.20	0.202	0.20 ± 0.19	0.372	-0.35 ± 0.50	0.551
-	Salinity	1.18 ± 1.28	0.372	2.03 ± 0.96	0.045	$NA \pm NA$	NA
T	Density	-1.24 ± 1.31	0.359	1.25 ± 0.81	0.137	$NA \pm NA$	NA

]	alue	NA	NA	NA	NA	.983	.874	NA	NA
r 4 g/	p-V					0	0		
CG salinity	$\beta \pm SE$	$NA \pm NA$	$NA \pm NA$	$NA \pm NA$	$NA \pm NA$	-1.93 ± 88.85	14.85 ± 84.86	$NA \pm NA$	NA + NA
g/l	<i>p</i> -value	0.700	0.769	0.289	0.558	0.407	0.829	0.875	0.858
CG salinity 2	$\beta \pm SE$	22.04 ± 50.06	-3.85 ± 1.09	135.63 ± 116.15	47.34 ± 71.22	-70.45 ± 69.96	-4.65 ± 17.98	-42.11 ± 219.52	-62.26 ± 275.06
1 g/l	p-value	0.848	0.284	0.007	0.675	0.071	0.885	0.478	0.555
CG salinity	$\beta \pm SE$	-6.55 ± 33.95	-9.68 ± 8.93	271.97 ± 77.66	16.56 ± 38.16	-69.45 ± 37.57	-2.65 ± 17.74	-43.87 ± 60.36	45.53 ± 75.56
Traits	Dispersal ability	Salinity	Density	Salinity	Density	Salinity	Density	Salinity	Density
Hist. sal.		~	ALIC.	-	D	и С	0.0	-	-1

 Table S12-b: TABLE S12 CONTINUED

Table S13-a: Genetic trait difference for high salinity selected *Paramecium aurelia* populations comparing those populations evolved in the absence and presence of competing species. Density reflects intraspecific density of the species. Calculations dispersal ability. The last column gives the summary statistics of the output when excluding microcosm ID 120 for which S. teres was evolved in the absence and presence of competing species. Competition reflects genetic trait differences between the selected use trait values from the salinity common garden environment 0.5, 1, 2 and 4 g/l, respectively for the traits: biomass, cell shape and found.

al salinity 4 g/l (without ID 120)	$\beta \pm SE$ <i>p</i> -value	$^{7} \pm 96.53$ < 0.001	2 ± 18.65 0.023	± 182.14 0.188	3 ± 24.29 0.043	± 261.44 0.097	2 ± 19.68 0.174	± 235.58 0.207	5 ± 35.56 0.700	$\beta \pm SE$ <i>p</i> -value	$) \pm 0.177$ 0.764	5 ± 0.026 0.581	5 ± 0.155 0.835	3 ± 0.014 0.600	1 ± 0.080 0.454	3 ± 0.015 0.129	3 ± 0.144 0.090	
4 g/l Historic	o-value	0.025 -619.87	0.141 42.62	0.249 -267.61	0.035 61.38	0.174 -609.61	0.200 -26.82	0.027 -538.74	0.874 14.35	-value	0.534 0.059	0.776 -0.015	0.970 0.035	0.425 -0.008	0.446 0.064	0.074 0.028	0.047 0.353	
Historical salinity	$\beta \pm SE$	-555.09 ± 125.89	32.49 ± 20.94	-194.41 ± 157.29	57.13 ± 22.68	-444.34 ± 270.81	-25.49 ± 19.85	-503.52 ± 186.63	-5.18 ± 31.51	$\beta \pm \text{SE}$	0.103 ± 0.153	-0.009 ± 0.030	0.004 ± 0.127	-0.015 ± 0.018	0.055 ± 0.069	0.029 ± 0.012	0.329 ± 0.119	
y 2 g/l	p-value	0.293	0.309	0.230	0.859	0.065	0.065	0.600	0.468	<i>p</i> -value	0.273	0.893	0.304	0.968	0.579	0.403	0.070	
Historical salinit	$\beta \pm SE$	-477.48 ± 419.53	31.17 ± 27.37	-562.44 ± 422.10	4.28 ± 23.08	915.64 ± 428.06	-131.08 ± 47.80	124.87 ± 229.04	-15.34 ± 17.49	$\beta \pm SE$	-0.289 ± 0.235	-0.003 ± 0.019	-0.170 ± 0.153	0.000 ± 0.005	-0.136 ± 0.235	0.027 ± 0.030	-0.274 ± 0.132	
Traits	Biomass	Competition	Density	Competition	Density	Competition	Density	Competition	Density	Cell shape	Competition	Density	Competition	Density	Competition	Density	Competition	•
CG sal.			0.0	,	-	c	V	-	4		2	0.0	,		c	V		

 Table S13-b: TABLE S13 CONTINUED

100 B	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	<i>p</i> -value
	± 151.42	0.006	229.81 ± 91.27	0.088	189.89 ± 73.22	0.010
02	± 11.68	0.421	10.03 ± 15.17	0.518	18.79 ± 14.15	0.186
10	= 144.90	0.087	176.77 ± 103.38	0.120	151.29 ± 112.42	0.216
.18	± 3.66	0.026	4.24 ± 14.85	0.782	8.45 ± 14.95	0.588
+	125.96	0.240	26.67 ± 136.68	0.854	-10.23 ± 172.98	0.956
100 ±	: 15.10	0.212	-8.17 ± 14.36	0.665	-1.36 ± 15.11	0.942
F 02	= 97.31	0.073	207.96 ± 136.61	0.219	227.22 ± 184.51	0.318
.99	± 4.00	0.390	-25.23 ± 12.63	0.122	-18.70 ± 10.12	0.127

Paramecium aurelia populations evolved in the 0, 0.5 and 1 g/l salt conditions. Competition reflects trait differences between the selected populations evolved in the absence and presence of competing species. Density reflects intraspecific density of Table S14-a: Trait difference due to historical competition and the presence of competitors for the salinity selected the species. Calculations use trait values from the salinity common garden environment 0.5, 1, 2 and 4 g/l, respectively for the traits: biomass, cell shape and dispersal ability.

Traits		Historical salinit	g 0 g/l	Historical salinity	/ 0.5 g/l	Historical salinity	/ 1 g/l
Biomass $\beta \pm SE$	$\beta \pm SE$		<i>p</i> -value	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	<i>p</i> -valu
Competition 302.03 ± 214.12	302.03 ± 214.12		0.235		<u> </u>		<u> </u>
Density -5.78 ± 19.70	-5.78 ± 19.70		0.773	/	/		/
Competition 557.01 ± 261.53	557.01 ± 261.53		0.144	27.73 ± 183.53	0.889	248.71 ± 356.92	0.520
Density 32.59 ± 18.08	32.59 ± 18.08		0.140	-16.87 ± 27.77	0.564	15.21 ± 28.32	0.614
Competition -42.37 ± 213.05	-42.37 ± 213.05		0.853	97.09 ± 175.39	0.595	-231.50 ± 484.51	0.653
Density 13.77 ± 10.89	13.77 ± 10.89		0.241	7.89 ± 21.32	0.722	49.67 ± 30.71	0.212
Competition 32.27 ± 222.59	32.27 ± 222.59		0.892	296.05 ± 200.27	0.207	572.27 ± 418.09	0.249
Density -2.76 ± 10.41	-2.76 ± 10.41		0.799	-10.25 ± 13.78	0.481	-15.31 ± 24.23	0.560
Competition /			/		<u> </u>	-8.94 ± 1152.50	0.994
Density /	/		/	/	/	388.36 ± 527.16	0.473
Cell shape $\beta \pm SE p$ -	$\beta \pm \mathrm{SE} \ p^{-1}$	d	value	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	<i>p</i> -value
Competition -0.225 ± 0.136 C	-0.225 ± 0.136 C		.178				<u> </u>
Density -0.008 ± 0.012	-0.008 ± 0.012	-	0.533				/
Competition $ -0.490 \pm 0.131 = 0$	-0.490 ± 0.131 0	0	0.028	-0.333 ± 0.118	0.020	-0.491 ± 0.170	0.020
Density -0.001 ± 0.008	-0.001 ± 0.008		0.865	-0.022 ± 0.018	0.245	0.014 ± 0.019	0.490
Competition -0.219 ± 0.139 (-0.219 ± 0.139 (0.197	-0.426 ± 0.149	0.036	-0.308 ± 0.204	0.174
Density $0.003 \pm 0.006 = 0$	$0.003 \pm 0.006 = 0$	0	.644	-0.008 ± 0.016	0.633	0.013 ± 0.027	0.646
Competition $-0.234 \pm 0.129 0.1$	-0.234 ± 0.129 0.	0	147	-0.085 ± 0.115	0.505	-0.162 ± 0.140	0.336
Density $-0.006 \pm 0.007 = 0$	$-0.006 \pm 0.007 = 0$	0	.385	-0.011 ± 0.008	0.185	-0.010 ± 0.009	0.344
Competition /			<u> </u>			-0.172 ± 0.602	0.779
Density /	/		/	/	/	-0.191 ± 0.262	0.479

 Table S14-b: TABLE S14 CONTINUED

	Dispersal ability	$\beta \pm SE$	<i>p</i> -value	$\beta \pm SE$	p-value	$\beta \pm SE$	<i>p</i> -value
	Competition	31.47 ± 121.60	0.809		/		<u> </u>
D	Density	-30.25 ± 12.35	0.035		_		<u> </u>
	Competition	-269.18 ± 146.30	0.163	-1.84 ± 159.91	0.991	-83.07 ± 190.02	0.672
0.0	Density	-14.58 ± 6.21	0.060	-44.10 ± 18.45	0.042	-25.07 ± 21.16	0.270
-	Competition	-112.04 ± 160.49	0.540	-93.95 ± 127.97	0.496	78.07 ± 153.80	0.627
-	Density	-5.12 ± 8.60	0.569	-13.74 ± 13.52	0.342	-23.96 ± 20.89	0.294
c	Competition	-20.69 ± 178.00	0.914	233.86 ± 135.19	0.193	9.90 ± 207.63	0.965
J	Density	-10.82 ± 9.30	0.284	-17.51 ± 9.87	0.117	-17.36 ± 13.54	0.294
	Competition				<u> </u>	-92.03 ± 11121.00	0.936
1	Density		/		/	-223.81 ± 477.72	0.647

Supplementary Figures

1

Figure S1: Temporal phenotypic difference during the selection phase (a-c) 2 Paramecium aurelia and (d-f) Spirostomum teres along salinity and between 3 populations in the absence and presence of competing species. Temporal pheno-4 typic change for (\mathbf{a}, \mathbf{b}) biomass, (\mathbf{c}, \mathbf{d}) cell shape and (\mathbf{e}, \mathbf{f}) dispersal ability was calculated 5 as the trait difference between all possible comparisons between individuals recorded at 6 the start (day 4) and end (day 78) of the experimental evolution. Comparisons were drawn 7 between individuals of the same microcosm. For representation purposes a unique mean 8 across all microcosms is shown. Blue circles and yellow triangles represent mean values 9 of the trait change in the absence and presence of competition, respectively. Error bars 10 show standard deviations. Zero values given by the dashed line represent no change over 11 time. Linear fits are a visual aid to see the trait change across salinity conditions. For most 12 salinity conditions, P. aurelia responded to selection to the abiotic salinity environment 13 by decreasing in biomass, becoming more elongated, and swimming slower. However, P. 14 *aurelia* populations evolved with competing species decreased even more in bio-area, were 15 less elongated, and swam even slower. Overall, S. teres individuals became larger, more 16 elongated, and swam faster by the end of the evolution experiment. However, individuals 17 evolved with competing species swam slower. The output of the statistical analysis on the 18 effect of salinity and the presence of competition on trait change during the selection phase 19 can be found in Supplementary Tables S1 and S2. 20

mean

on the common garden data for *Paramecium aurelia*. For each effect size shown in Figure 3 in the main text, we here show the Figure S3: Robustness analysis for the effect sizes and their corresponding p-values obtained from regression analysis ..., 90% of the original data. We also display the mean corresponding p-value (circles). Filled shapes indicate that the largest value 20, mean effect size (squares) obtained from 1000 bootstrap samples when bootstrapping the observed data along an interval of 10, of the 95% confidence interval of the bootstrapped p-values is smaller than 0.0536 37 38 35 30

34

(Evo.) and evolution of plasticity (Evo. Plast.). Bars represent effect size, with error bars reflecting standard errors. Significant effects sizes are obtained from a linear regression analysis for each of the components: (ancestral) plasticity (Plast.), mean trait evolution are given in grey. Solid rectangle around the two highest salinity conditions of the competition treatment reflect estimates of genetic trait change in the absence of S. teres, as S. teres went extinct in the highest salinity conditions (except in one replicate microcosm [D 120 for 4 g/l). Results with and without this replicate are displayed in the last two columns of the figure. Supplementary Tables Figure S5: Reaction norm analysis for *Paramecium aurelia* quantifying trait change in biomass, cell shape and dispersal between the ancestral and each selected population. Partitioning of the observed trait change from the ancestral population at the start of the selection phase to each of the selected population measured in the common garden experiment. Effect S5-S6 show the detailed results of the statistical analysis. 49 50 51 52 53 54 55 56

58

36

those between the ancestral and each selected population. Partitioning of the observed trait change from the ancestral population at from linear regression analysis for each of the components: ancestral) plasticity (Plast.), mean trait evolution (Evo.) and evolution conditions (except in one replicate microcosm ID 120 for 4 g/l; however only 1 individual was found, which was not enough to perform Figure S6: Reaction norm analysis for *Spirostomum teres* quantifying trait change in biomass, cell shape and dispersal the start of the selection phase to each of the selected population measured in the common garden experiment. Effect sizes obtained of plasticity (Evo. Plast.). Bars represent effect size, with error bars reflecting standard errors. Significant effects are given in grey. No partitioning could be done for the two highest salinity conditions of the competition treatment as S. teres went extinct in the reaction norm analysis using regression). Supplementary Tables S7-S8 show the detailed results of the statistical analysis 60 61 62 63 64 65 99 29

37

Figure S7: Phenotypic plasticity response to salinity of Paramecium aurelia for 70 biomass, cell shape and dispersal ability of the ancestral (Anc.) and each of the 71 selected (0, 0.5, 1, 2 and 4 g/l) populations evolved in the absence and presence 72 of competitors. Bars display the magnitude (i.e. effect size) of the phenotypic plasticity 73 responses to salinity and their standard errors of the ancestral (Anc.) (left panels) and 74 each of the selected (0, 0.5, 1, 2 and 4 g/l) populations (remaining panels) for **a**, biomass 75 (quantified as bio-area), b, cell shape (quantified as cell size ratio of the major and minor 76 cell size axis) and \mathbf{c} , dispersal ability (quantified as gross speed) for *P. aurelia* in the 77 absence (blue) and presence (orange) of competition. Darker colors indicate significant 78 effects, with asterisks referring to the level of significance; * < 0.05, ** < 0.01, *** < 0.0179 0.001. The last column of the competition treatment displays the plasticity response to 80 salinity when replicate microcosm ID 120 is excluded. Summary of statistical results can 81 be found in Supporting Table S9-S10. 83

Figure S8: Phenotypic plasticity response to salinity of *Spirostomum teres* for 85 biomass, cell shape and dispersal ability of the ancestral (Anc.) and each of the 86 selected (0, 0.5, 1, 2 and 4 g/l) populations evolved in the absence and presence 87 of competitors. Bars display the magnitude (i.e. effect size) of the phenotypic plasticity 88 responses to salinity and their standard errors of the ancestral (Anc.) (left panels) and 89 each of the selected (0, 0.5, 1, 2 and 4 g/l) populations (remaining panels) for **a**, biomass 90 (quantified as bio-area), **b**, cell shape (quantified as cell size ratio of the major and minor 91 cell size axis) and \mathbf{c} , dispersal ability (quantified as gross speed) for S. teres in the absence 92 (blue) and presence (orange) of competition. Darker colors indicate significant effects, with 93 asterisks referring to the level of significance; * < 0.05, ** < 0.01, *** < 0.001. No plasticity 94 response could be quantified for the two highest salinity conditions in the competition 95 treatment due to extinction of the species. Summary of statistical results can be found in 96 Supporting Table S11-S12. 98

99

Figure S9: Trait difference due to historical competition and the presence of 100 competitors for the salinity selected *Paramecium aurelia* populations evolved 101 in the 0, 0.5 and 1 g/l salt conditions. Bars display the magnitude (i.e. effect size) of 102 the trait difference due to historical competition and the presence of competitors and their 103 standard errors for the selected populations evolved in the 0, 0.5 and 1 g/l salt conditions 104 (given by salinity origin) for **a**, biomass (quantified as bio-area), **b**, cell shape (quantified 105 as cell size ratio of the major and minor cell size axis) and **c**, dispersal ability (quantified 106 as gross speed). Grey bars indicate significant effects, with asterisks referring to the level 107 of significance; * < 0.05, ** < 0.01, *** < 0.001. Statistical results can be found in Table 108 S14. 109

Figure S10: Biomass and cell shape values for *Paremecium aurelia* and *Spiros*-112 tomum teres obtained in the common garden of those populations evolved in 113 the absence of competition along the salinity conditions used in the selection 114 **phase.** a, Biomass (measured as bio-area, μm^2) and b, cell shape (measured as the cell 115 size ratio of the largest to second largest cell size axis) for *P. aurelia* (unfilled circles) and 116 S. teres (filled squares). Values reflect traits of the selected populations evolved in the 117 different salt concentrations (0, 0.5, 1, 2 and 4 g/l) in the selection phase measured in the 118 0.5 g/l salt concentration common garden environment. 129

¹²² Figure S11: Community composition at the start (day 4) and end (day 78) of

¹²³ the experimental evolution and the common garden (day 82). Pie-charts represent

124 relative species densities with respect to their biomass at a, start (day 4) and b, end (day

125 78) of the experimental evolution, and at the common garden (day 82) for c, historical

salinity 2 g/l and d, historical 4 g/l.

Figure S12: Genetic trait difference for the highest salinity selected Parame-129 cium aurelia populations comparing those evolved in the absence and presence 130 of competing species including microcosm ID 120. Bars display the magnitude (i.e. 131 effect size) of the genetic trait difference along the different common garden (CG) salinity 132 environments for the P. aurelia selected populations for biomass (quantified as bio-area), 133 cell shape (quantified as cell size ratio of the major and minor cell axis) and dispersal ability 134 (quantified as gross speed). Error bars reflect standard errors of the effect size as obtained 135 from the regression model. Grey bars indicate significant effects, with asterisks referring to 136 the level of significance; * < 0.05, ** < 0.01, *** < 0.001. Summary of statistical results 137 can be found in Supplementary Table S13. 139