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Supplementary Methods 
 

S1. Characterization of spatial networks as a function of rewiring 

The networks used in this study represent habitat fragments linked by dispersal corridors. By 

studying fragmented habitats as networks, we can characterize and analyze their structure and 

relate that analysis to the observed node and network population dynamics.  

All networks were comprised of 10 nodes and 20 links. Within a network, the 10 nodes were fixed 

in a ring with 80 mm (node centroid – node centroid) between neighboring nodes (Fig. S1). We 

used three types of networks of varying degrees of link heterogeneity. In ‘lattice’ networks, each 

node was connected to its two nearest neighboring nodes and to its two second-nearest neighboring 

nodes. For the second type of network, we randomly rewired 20% of the links, in the same way 

Watts and Strogatz (1) created their ‘small world’ networks. We call these partially rewired 

networks since these networks are of small size (small number of nodes and links) and so did not 

uniformly have a small world structure. Finally, we created a third group of networks we call 

‘random’ by randomly rewiring all of the links. 

All of the lattice networks necessarily have the same topology (i.e., same links between nodes), 

while we used eight different partially rewired network topologies, and eight different random 

network topologies, for a total of 17 unique network structures. Since node placement was fixed, 

rewiring had the potential to change the length of the link required to span the distance between 

nodes (Fig. S1). In lattice networks, each node was connected to its two nearest neighbors via 15 

mm links and to its two second-nearest neighbors via 90 mm links. Link length ranged from 15 

mm to 190 mm in partially rewired and random networks. Mean ± s.d. link length was 65 ± 3 mm 

and 120 ± 8 for partially rewired and random networks, respectively. Information detailing the 

structure of each network is provided in the data repository: https://doi.org/10.25678/0005V2. 

 

S2. Study organism 

This study was conducted with the microarthropod Folsomia candida Willem (Collembola: 

Isotomidae). Folsomia candida dwells in soils worldwide in a variety of habitats including forests, 

stream banks, agricultural systems, and moss (2). They feed on fungi, including plant root 

mycorrhizae (3). Our population reproduced by parthenogenesis and therefore contained only 

females. Individuals start to oviposit three weeks after hatching and the eggs hatch after one week. 

The lifespan of an individual is approximately 111 days at 25 ºC. Adult F. candida are 

approximately 1.5 – 3.0 mm in length (2). 

 

S3. Theoretical model 

We created a stochastic agent-based version of the Markov-chain model introduced in Gilarranz 

et al. (4), and parameterized following Beddington (5). This stochastic version of the model allows 

us to better explore the role of network and node topological characteristics in the spread of 

populations. It is particularly useful when the number of individuals is small and the local 

populations are far from their carrying capacity. 
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The model was run on the spatial networks described above (S1. Characterization of spatial 

networks as a function of rewiring). The model was run 50 times in each of the 17 different network 

structures. In each of those 50 model replicates, we use different initial conditions. Those initial 

conditions are different across replicates but the same across network topologies. At the beginning 

of the simulation, the network is empty. In the first time-step, a population of 200 individuals 

randomly assigned between the four size classes is inoculated into node 5. For each subsequent 

time step, we first calculate the probability that each individual reproduces, then disperses, and 

then dies. Each time step is considered to have a length of one day. 

Survival 

Density-dependent survival, 𝑆(𝑁),  is calculated as follows:  

𝑆(𝑁) = (𝑑 − 𝑒 ln (𝑁))/7 (Eq. S1) 

where d = 1.35, and e = 0.14. The upper-limit of survival was set to one. Both reproduction and 

survival probabilities were parameterized according to Beddington (5). Individuals die if they 

reach their maximum life span of 111 days estimated empirically at 25 ºC (2). 

Reproduction 

Reproduction probability of an individual 𝑖 is a function of the total number of individuals in the 

node where that individual is at that time step (Eq. S2). Only individuals of the two largest classes 

– individuals which are at least 29 days old – reproduce. Density-dependent reproduction, 𝐹(𝑁), 

is calculated as following: 

𝐹(𝑁) = (𝑝 ln(𝑁) + 𝑞 ln(𝑁)2 + 𝑐)/7, (Eq. S2) 

where N is the population size of the node, p = 18.53, q = -1.74, and c = -44.04. We divide by 7 to 

obtain a daily rate. The lower-limit of the probability was set to zero. For each individual at least 

29 days old, we draw a random number obtained from a uniform pseudorandom distribution. If 

the random number is smaller than the reproduction probability, then we add a new juvenile to that 

node. 

Dispersal 

Dispersal probability is a function of the distance between two nodes. We assume that the dispersal 

kernel follows a negative exponential function. The dispersal probability of an individual between 

two nodes j and k, is calculated as follows: 

𝐷𝑗,𝑘 = 𝑎 · exp (𝑏 · 𝑊(𝑗, 𝑘)), (Eq. S3) 

where 𝑊(𝑗, 𝑘) is the distance between those two nodes, 𝑎 is the probability of moving from one 

node to another when the distance between two nodes is zero, and 𝑏 is the exponent that controls 

the shape of the dispersal kernel (how fast the dispersal probability decays with distance, Fig. 1B 

in the main text). In the distance-dependent dispersal model, an individual in node 𝑗 moves to a 

neighboring node 𝑘 if a random number drawn from a uniform pseudorandom distribution is equal 

or smaller than 𝐷𝑗,𝑘. In order to give all connecting nodes an equal chance of receiving individuals, 

we randomize the order in which we iterate through the connected nodes. Only individuals older 

than 7 days disperse, meaning that we assume that juveniles do not disperse, and that the dispersal 

probability does not depend on the age of the individual once it is no longer a juvenile. We also 

assume that dispersal operates on a faster time scale than demography, so when an individual 

moves, it remains in the same age class. When dispersal is considered to be distance-independent, 
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in order to compare distance-dependent dispersal and distance-independent dispersal for the same 

value of the exponent 𝑏, the values 𝑤𝑖,𝑗 are all equal to the average dispersal probability of the 

kernel with that specific exponent (Fig. S7). To obtain this average value, the kernel function is 

evaluated between 15 and 190 mm (minimum and maximum distance in our experimental setup). 

 

S4. Experiment Methods 

S4.1. Network construction 

We created habitat networks each comprised of 10 habitat patches (nodes) connected via corridors 

(links) that allowed individuals to move between habitat patches (Fig. S1). Habitat patches were 

polypropylene vials (30 mm diameter, 85 mm height) 2/3 full of an artificial soil substrate (a 

mixture of de-ionized water and activated charcoal:plaster of Paris in a 1:8 ratio by weight). Holes 

were pierced in the lid of each vial to enable air exchange; the lids were always closed except when 

vials were being photographed. We burned holes into the sides of each vial at the level of the 

surface of the artificial soil substrate, and then inserted Tygon tubing (6 mm outer diameter, 4.4 

mm inner diameter) to act as links. These links were not habitable but acted only as movement 

corridors. The tubing was attached to the vials using connectors (wide ends of pipette tips – 

Eppendorf epT.I.P.S. – cut to 15mm in length) glued into the holes in the sides of the vials.  

The links were attached to the nodes to create the 17 network structures described above (S1. 

Characterization of spatial networks as a function of rewiring). Partially rewired and random 

configurations were each represented by eight physical networks (each with different topologies 

but the same rewiring probability). We also created eight replicate lattice networks. We therefore 

had a total of 24 physical networks. 

 

 

Figure S1. Photographs from the experiment of representative lattice (A), partially rewired (B), 

and random (C) networks.  
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S4.2. Experiment maintenance 

The experimental animals used in this study were obtained from a laboratory culture from 

Environment Canada, which were taxonomically confirmed as F. candida. The culture was 

acclimated to a temperature of 20 ± 2°C; the lab was maintained at this temperature for the duration 

of the experiment. De-ionized water was sprayed onto the artificial soil substrate once per week 

during the experiment, to maintain moist but not waterlogged conditions. Food (granulated dry 

baker’s yeast) was added to each node following a unique, autocorrelated feeding regime sensu 

Gonzalez and Holt (6). This created spatiotemporally variable resource heterogeneity to encourage 

movement among the nodes. Every other day of the experiment, each node was defined as being 

in one of two states: ‘food added’ or ‘no food’. We started by randomly assigning 30% of the 

nodes to the ‘food added’ state on day 0; the rest of the nodes were assigned the ‘no food’ state. 

Every two days, each node was given a probability of transitioning between states, governed by 

the transition matrix, T: 

 𝑇 = (
1 − λ λ

λ 1 − λ
) (Eq. S4) 

where 0 < λ < 1 and λ is the probability of a change in state between a day and the day two days 

preceding it. We set λ = 0.2, meaning that food availability exhibited positive temporal 

autocorrelation. If a node was in a ‘food added’ state, we added 1 granule of baker’s yeast; if a 

node was in a ‘no food’ state, no yeast was added. Old, uneaten food was removed prior to adding 

new food. Following this feeding regime, food was added to each node an average of 45 ± 0.74 

days over the course of the 182-day experiment. 

S4.3. Data collection 

To begin the experiment, we placed 10 randomly selected collembola into node 5 of each network. 

To estimate population sizes throughout the experiment, we photographed each node typically 

every 1-2 (maximum 5) days (Fig. S2A). The duration of the experiment was 182 days; 

photographs were taken on 97 days of the experiment. Photographs were in jpeg format, captured 

in RGB, and were 3264 × 2448 pixels and 30 MB in size. This generated ~45000 photographs. 

Since it was not feasible to process (count all the collembola in) all of these photographs manually, 

we developed an algorithm that automatically estimated the number of individuals in each image 

(see section S5. Image recognition analysis). 

 

S5. Image recognition analysis 

We developed an algorithm in MATLAB to estimate the number of collembola in each node. First, 

each jpeg (Fig. S2A) was converted to grayscale, scaled between 0 and 255. The surface of the 

node was then isolated through a routine that converged on the center of the dark node surface and 

identified the radius of the node through iteration. The image was then cropped to the boundaries 

of the node surface (Fig. S2B). Visual noise in the image caused by variation in the color of the 

artificial soil surface was removed by converting the image to a binary (black and white) image 

(Fig. S2C). The algorithm then identified and outlined discrete white objects on the black 

background, using functions from the Image Processing Toolbox in MATLAB. 
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Figure S2. Illustration of the steps taken in the image recognition analysis. A) An example of an 

original image. Collembola of various sizes as well as pieces of yeast food are visible. B) The 

image is cropped to the boundaries of the node. C) Visual noise is removed, making the collembola 

more visible. 

In order to distinguish collembola from other white objects in the node (e.g., food, eggs, debris), 

we compared the size and shape of objects identified by the algorithm to a reference distribution 

of real collembola. The reference distribution was built using 500 manually identified collembola 

from 16 photos of individual nodes. We used functions from the Image Processing Toolbox in 

MATLAB to measure the aspect ratio (body length / body width), area, and perimeter to area ratio 

(measured in pixels, see Table S1 for formulae) of each of the white objects. Area was adjusted to 

account for different zoom levels/camera heights by estimating it relative to the radius of the node 

(Table S1). We then set lower and upper cutoff values for each of these parameters as the 2.5th and 

97.5th quantiles of their distributions, with the exception that the lower cutoff for area was set to 

100 based on manual measurements of original photos (Table S1). 

 

Table S1. Formulae and cutoff values for each of the size and shape parameters used to distinguish 

real collembola from other objects in the nodes. 

Parameter Formula* Lower cutoff value Upper cutoff value 

Aspect ratio 𝐿
𝑤⁄  2.7 5.0 

Area (adjusted) (1000
106 ∙ 𝑟⁄ )

2𝐴

 100 2000 

Perimeter to area 

ratio 

𝑃
2 ∙ √𝜋𝐴′⁄  1.2 1.9 

* L : body length, w : body width, r : node radius, 𝐴, 𝐴′ : area of body (unadjusted, adjusted), P : 

perimeter of body 

 

We excluded any object identified in the experimental images that did not fall within the cutoff 

values for all parameters. Population size was then estimated as the number of collembola-shaped 

objects in the node. We validated the image recognition analysis by manually counting individuals 

in 30 images and comparing these “true” counts to the estimates generated by the algorithm. These 

values were highly correlated (r = 0.93, R2 = 0.86; Fig. S3). We see that estimated counts tend to 

underestimate the true counts, particularly at high abundances (range 150-250 individuals). 

However, the high correlation validates the use of our automated image processing procedure. 

Note that, although effective, the methods described above have now been updated by the methods 

described by Gilarranz et al. (4). 



 

 

7 

 

 

Figure S3. Results of the image recognition analysis validation. Estimated counts of collembola 

generated by the algorithm are regressed on “true” counts of collembola taken manually. The 

estimated and true counts are highly correlated. The 1:1 line is shown in red. 

 

S6. Estimation of the Folsomia candida dispersal kernel 

The dispersal probability as a function of distance (Fig. 1B in the main text) was calculated in a 

separate pilot experiment (Fig. S4). For this experiment we had two-node networks linked by tubes 

of varying lengths: 15, 90, 130, 170, and 190 mm, reproducing all the lengths that we find in the 

networks used for the main experiment (nodes and links are described in section S4.1. Network 

construction). We used five replicates of each distance. One of the nodes (source) in each pair was 

inoculated with exactly 84 adult individuals, and the number of individuals was tracked daily in 

both source and destination nodes for 20 days, while keeping them fed with a pattern resembling 

that of the main experiment. 



 

 

8 

 

 

Figure S4. Experimental setup to obtain the dispersal probability as a function of distance. Two-

nodes networks linked by tubes of varying lengths (15, 90, 130, 170 and 190 mm). Only one of 

the two nodes was inoculated. Population sizes were tracked in both nodes daily for a 20-day 

period. 

In Fig. S5 we show the number of individuals that disperse between the two nodes each day, 

obtained by calculating changes in population sizes in the number of adults in either node (source 

or destination).  
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Figure S5. Time series of the number of individuals that disperse between two nodes. Thin 

coloured lines represent each individual replicate. Thick blue lines represent the average across all 

five replicates. Each panel shows one of the target distances–shown in the panel label at the top-

right corner.  

Since the population of adult individuals remains constant for the length of this experiment, it is 

straightforward to transform the number of individuals that disperse between two habitat 
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fragments, into dispersal probability. The probability of a single individual dispersing from one 

patch to an adjacent patch linked by a given distance is the average number of individuals that 

dispersed at that distance on a day for all the replicates, divided by the size of the population in the 

two-patch network (84 individuals). In Fig. S6 we show the individual dispersal probability as a 

function of the distance between two habitat fragments (Fig. S6).  

 

Figure S6. Probability of a single individual dispersing in one day between two habitat fragments 

as a function of the distance between said fragments. The error bar shows the standard error 

between replicates. Distance is given in mm. 

The individual dispersal probability in 24h (𝐷𝑖,𝑗) as a function of distance between habitat 

fragments (𝑤𝑖,𝑗) in this pilot experiment can be modelled as a negative exponential, following the 

form: 

𝐷𝑖,𝑗  =  𝑎 ·  𝑒𝑥𝑝(𝑏 · 𝑤𝑖,𝑗),                                                                                                    (Eq. S5) 

where 𝑎 = 0.178 ± 0.019, and the exponent 𝑏 = -0.043 ± 0.007. The 𝑅2 between the empirical 

dispersal data and this negative exponential model was 0.9998. 

Finally, we explored whether there were any signs of density-dependent dispersal by searching for 

evidence of a non-linear relationship between the change in the number of individuals in one node 

as a function of the number of individuals in the other node. We found no evidence to support 

density-dependent dispersal.  

 

S7. Spatial properties of nodes and networks 

S7.1. Minimum distance from source 

For each node, the minimum distance from the source is the length, in millimeters, of the shortest 

path between that node and node 5 or “source node”, the node in which we placed collembola at 

the beginning of the experiment/model simulation. 
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S7.2. Algebraic connectivity 

Algebraic connectivity is defined as the second-smallest eigenvalue of the normalized Laplacian 

matrix (7). The elements 𝑙𝑖,𝑗 of the normalized Laplacian matrix 𝐿 of a weighted graph 𝑊 are 

defined as: 

𝑙𝑖,𝑗 = {

1,                                                if 𝑖 = 𝑗, and 𝑤𝑖,𝑗 ≠ 0

−1 √𝑠𝑖 · 𝑠𝑗⁄ ,            if 𝑖 ≠ 𝑗, and 𝑖 is adjacent to 𝑗

0,                        if 𝑖 ≠ 𝑗, and 𝑖 is not adjacent to 𝑗

,                                                  (Eq. S6) 

 

where 𝑠𝑖 and 𝑠𝑗 are the strengths of nodes 𝑖 and 𝑗 respectively. 

 

The elements 𝑤𝑖,𝑗 of the graph 𝑊 represent the probability of an individual to disperse between 

nodes 𝑖 and 𝑗 in 24 hours. When dispersal is considered to be distance-dependent, that probability 

is given by the dispersal kernel (Fig 1B in the main text). The shape of the kernel, and therefore 

the values of 𝑤𝑖,𝑗 are controlled by the exponent 𝑏 (Eq. S5). When dispersal is considered to be 

distance-independent, the values of 𝑤𝑖,𝑗 still depend on the exponent 𝑏, so that the outputs of the 

distance-dependent dispersal and the distance-independent dispersal models are comparable. 

However, in the distance-independent version, all values of 𝑤𝑖,𝑗 are the same for a given value of 

𝑏. Fig. S7 shows the relationship between the exponent of the dispersal kernel and the 𝑤𝑖,𝑗 values 

in the distance-independent model. 

 

Figure S7. Relationship between the exponent of the dispersal kernel and the average dispersal 

probability of the kernel when dispersal is distance-independent. 
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S8. Statistical analysis 

S8.1. Random effects in analysis of spread 

We had to account for several random effects in our analysis of the effects of habitat network 

configuration and spatial properties on spread. In the model, topology was used as a random effect 

when considering partially rewired and random networks, because we expect some variance in 

time to colonization and time to full network occupancy to be explained by the exact topology of 

the network, and each network topology was replicated 50 times. All lattice networks had the same 

topology, and so this random effect was not included in the analysis of lattice networks. Model 

replicate (repID) was also included in the analysis of time to node colonization, to account for the 

non-independence of nodes within the same simulated network. When analyzing time to node 

colonization in the experiment, we also accounted for the non-independence of nodes within the 

same physical network; this variable is named landscapeID. 

S8.2. Time to node colonization and full network occupancy 

Estimating time to node colonization and full network occupancy 

We investigated spread at the node and network levels. Spread at the node level was measured as 

the time to colonization, estimated as the first day on which at least one individual was observed 

in that node. We excluded node 5 of each network from all analyses of colonization because we 

placed collembola in this node at the beginning of the experiment and so it was not naturally 

colonized. Spread at the network level was measured as the time to full occupancy, estimated as 

the day on which every node in the network had been colonized. All analyses were conducted in 

R v4.0.2. (8).  

Effects of habitat network configuration on spread 

We explored the effects of habitat network configuration on spread in the model parameterized 

with the dispersal kernel for F. candida and in the experiment with F. candida. To analyze this 

using model data, we built random effects models for partially rewired and random network 

configurations in the R package 'lme4' (9). We used log10-transformed time to full network 

occupancy as the response variable and included network topology as a random effect. For lattice 

networks, we build an intercept model with log10-transformed time to full network occupancy as 

the response. Mean time to full occupancy for each configuration was estimated using a 

bootstrapping procedure with 1000 bootstrap replicates, using the ‘boot’ function in the R package 

‘boot’ (10, 11). 95% confidence intervals were estimated as the range from the 2.5th and 97.5th 

percentiles of the bootstrapped sample values. 

We tested the effect of habitat network configuration on time to full network occupancy in the 

experiment using a linear fixed-effects model with log10-transformed time to full occupancy as 

the response and habitat network configuration included as a fixed effect. We used this model to 

estimate the mean time to full network occupancy ± 95% confidence intervals for each network 

configuration. We used the ‘anova’ function in R to conduct an overall significance test. Habitat 

network configuration had a significant effect on time to full network occupancy in the experiment, 

so we used Tukey post-hoc tests to contrast each pair of network configurations. 
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Effects of spatial metrics on spread 

We investigated whether spread could be predicted by metrics describing the spatial properties of 

nodes and networks in the model parameterized for F. candida and in the experiment. At the node 

level, we investigated minimum distance from source. To analyze model data, we built linear 

mixed models with log10-transformed time to node colonization as the response variable. We 

included habitat network configuration, the second-degree polynomial of distance from source, 

and their interaction as fixed effects. Network topology and model replicate (repID) were included 

as random effects. We conducted a bootstrapping procedure of model estimates (1000 replicates) 

to estimate the mean time to node colonization ± 95% confidence intervals (2.5th and 97.5th 

percentiles of bootstrapped sample values) for each network configuration and as a function of 

minimum distance from source.  

To analyze the empirical data, we built a linear mixed model with time to node colonization as the 

response. Fixed effects were minimum distance from source, habitat network configuration, and 

their two-way interaction. The identity of the physical network (landscapeID) was included as a 

random effect. We conducted a bootstrapping procedure of model estimates (1000 replicates) to 

estimate the mean time to node colonization ± 95% confidence intervals (2.5th and 97.5th 

percentiles of bootstrapped sample values) for each network configuration and as a function of 

minimum distance from source. We used the ‘drop1’ function in R to conduct a significance test. 

At the network level, we investigated the effect of weighted algebraic connectivity on time to full 

network occupancy. To analyze model data, we built a linear mixed model with log10-transformed 

time to full occupancy as the response, and log10-transformed weighted algebraic connectivity as 

a fixed predictor. Topology was included as a random effect. We used a bootstrapping procedure 

with 1000 replicates to estimate the mean ± 95% confidence intervals (2.5th and 97.5th percentiles 

of bootstrapped sample values) of the time to full network occupancy as a function of weighted 

algebraic connectivity.  

To analyze experiment data, we used a linear fixed-effects model with log10-transformed time to 

full occupancy as the response, and weighted algebraic connectivity included as a fixed effect. We 

used a bootstrapping procedure with 1000 replicates to estimate the mean ± 95% confidence 

intervals (2.5th and 97.5th percentiles of bootstrapped sample values) of the time to full network 

occupancy as a function of weighted algebraic connectivity. We used the ‘anova’ function in R to 

conduct a significance test. 

Effect of the shape of the dispersal kernel on spread 

We tested for the effect of the exponent of the dispersal kernel, b, on spread in the model. We 

obtained bootstrapped estimates (1000 replicates) of time to full network occupancy for each 

configuration and as a function of b. 
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Supplementary Results 

 

Figure S8. Node 

population size 

through time in the 

experiment, for 

each habitat 

network 

configuration and 

replicate. Line color 

indicates the 

distance each node 

was located from 

the source node. 
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Figure S9. From inoculation to full network occupancy. For the same empirical networks shown 

in Fig. 1 in the main text (from left to right of each column: lattice, partially rewired, and random), 

here we show the colonization process observed in the experiment for these particular replicates. 

Black nodes are occupied and white nodes are empty. 
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Figure S10. Habitat configuration affects time to node colonization after accounting for minimum 

distance from source. Left panel shows model predictions for F. candida, assuming the exponent 

of the dispersal kernel, b = -0.0430; right panel shows experiment results. Regression lines and 

bands show predicted values from linear mixed models with 95% confidence intervals. Points 

represent single nodes. In both the model and experiment, the effect of habitat configuration 

remains after controlling for the distance between the source and focal node (LMM for 

experimental data: χ2 = 6.61, df = 2, p = 0.037). Sample sizes: each model treatment is represented 

by 50 replicate simulations; each experiment treatment is represented by 8 replicate networks. 
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Figure S11. Algebraic connectivity as a function of rewiring probability for networks of three 

different sizes. A) 10 nodes, B) 100 nodes, C) 1000 nodes. When the rewiring probability is zero 

the network is a lattice, and when the rewiring probability is 1 the network is an Erdös-Rényi 

random network. Rewiring is performed following (1). All networks have an average degree of 4. 

Algebraic connectivity is calculated over the normalized Laplacian matrix of the binary network. 
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Figure S12. Algebraic connectivity in networks whose weights represent the dispersal probability 

between two habitat fragments. Each line represents one network. A) The dispersal probability is 

the same in all links, regardless of the distance between two nodes. This scenario would be 

equivalent of models that ignore distance or the geographical embedding of the spatial networks. 

B) The dispersal probability decreases as a function of the distance between the habitat fragments 

following a negative exponential. In order to make the left panels and right panels comparable, the 

dispersal probability in A and C is calculated as the average dispersal probability for a given 

dispersal kernel in B and D. In A and B we used networks of 100 nodes while C and D are 

equivalent to A and B but with networks of 1000 nodes. 
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Table S2. Comparison between algebraic connectivity (AC) and network diameter (ND) at 

explaining days to full network occupancy for the experimental data. Network diameter is the 

shortest distance between the two most distant nodes in the network. That distance would be given 

in number of links for the binary networks and in mm for the weighted networks. Comparisons are 

meant to be drawn between AC and ND and not across Weighted and Binary. 

 Network Metric Estimate Std. 

Error 

F. Value DF p-value R2 

Experiment Binary AC 11.1871 5.1427 4.7 1.22 0.0406 0.14 

Experiment Binary ND -0.0840 0.0565 2.2 1.22 0.1508 0.05 

Experiment Weighted AC -3.9073 1.1095 12.4 1.22 0.0019 0.33 

Experiment Weighted ND 0.0007 0.0002 11.3 1.22 0.0029 0.31 

 

Table S3. Comparison between algebraic connectivity (AC) and network diameter (ND) at 

explaining days to full network occupancy for the model data when using the dispersal kernel 

parameterized for F. candida. Network diameter is the shortest distance between the two most 

distant nodes in the network. That distance would be given in number of links for the binary 

networks and in mm for the weighted networks. Comparisons are meant to be drawn between AC 

and ND and not across Weighted and Binary. 

 Network Metric Spearman’s 

rho  

Model Binary AC 0.40 

Model Binary ND -0.35 

Model Weighted AC -0.78 

Model Weighted ND 0.80 
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