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Supplementary Methods 
 

S1. Data extraction 

 

S1.1. State variables 
Lake water quality state variables are obtained from the Copernicus Global Land Service (CGLS; 

https://land.copernicus.eu/global/). CGLS provides trophic state index and lake surface reflectance obtained 

by satellite remote sensing. We use the longest contiguous dataset available in CGLS, which is based on raw 

data acquired by the Medium Resolution Imaging Spectrometer (1) onboard the European ENVISAT satellite 

between March 2002 and April 2012. The database version 1.3. used in this study comprises of water quality 

variables for more than 1000 lakes worldwide (1). The raw data was processed with the CaLimnos processing 

chain (2–4). It facilitates data discovery, subsetting, radiometric correction, pixel identification, atmospheric 

correction, water quality retrieval, and aggregation. Turbidity and trophic state estimation are retrieved using 

an Optical Water Type classification (5). 13 OWT were predefined by clustering in situ spectral reflectance 

measurements (6), and the best performing algorithm was selected for each OWT and tuned for that OWT. 

An OWT membership score is calculated for each observed satellite pixel, and the water quality parameter 

retrieval for this pixel is a weighted average obtained from the algorithms that are associated with the three 

highest-scoring OWTs. There is a minimum size of the lakes that can be studied using these methods. For 

high trophic state lakes, and depending on the shape, the limit is between 3-10 Km2. The lower the 

reflectance and the variable of interest, the larger the relative effect of environmental noise, which means that 

the size limit for oligotrophic lakes is even higher.  

 

The CGLS products are provided as global, 10-day averaged NetCDF maps of 13 billion pixels at 300 m 

spatial resolution. Tabulated data was extracted from these products using the Diversity II Python library (2), 

which was slightly modified to match CGLS data conventions. The library uses the StatsOp of the Graph 

Processing Tool included in ESA's SNAP toolbox (7), and lake shapefiles that were converted from outlines 

provided by CGLS. In this manner, we obtain for each lake and 10-day period the spatial average, median, 

variance and the thresholds of the 10th and 90th percentile. If less than half of the pixels that represent the lake 

have been captured in a particular image (due to cloud coverage, for example), then that time step is excluded 

for that particular lake.  

 

S.1.1.1. Trophic state index 
The trophic state index is derived from chlorophyll retrievals from atmospherically corrected MERIS 

reflectance, using the conversion proposed by ref. (8). Chlorophyll is retrieved by means of four different 

algorithms that were identified and re-tuned for the 13 OWT, like in the case of turbidity (3). In terms of the 

dominant characteristics described by ref. (6), the OC2 algorithm is used for the clearest waters 

(https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/). Waters with moderate to high levels of immersed 

cyanobacteria are processed with a 2-band algorithm (9), but for the most productive cyanobacteria-

dominated cases, a quasi-analytical algorithm is used (10). For moderately balanced to sediment-laden, 

eukaryote-dominated waters, as well as for cyanobacteria scum-covered cases, another 2-band algorithm is 

used (11). Both 2-band algorithms use MERIS bands 7 and 9 (665 nm and 709 nm, respectively). A 

comprehensive matchup comparison across all OWT (n=350, R2=0.62) demonstrates a relatively high 

agreement, with the limitation that some of the OWT are not well represented. Note that ref. (3) also refers to 

Neil et al., (submitted) for validation results, but their final paper (12) recommends a slightly different set of 

algorithms and faulty error metrics. The dynamic switching algorithm developed in ref (12) accounts for 

https://land.copernicus.eu/global/
https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/
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individual algorithms' validity ranges. They showed that chlorophyll-a retrieval uncertainties increase below 

10 mg/m3, while the detection limit is below 1 mg/m3. We see no other discontinuities than the slightly 

lower performance at <10 mg. By binning units mg/m3 to TSI, daily to 10-day aggregates, and pixels to lake 

area averages, we further mitigate the decrease of signal-to-noise for lower concentrations. In other words, 

every 10-day lake average TSI in our time series corresponds to thousands or millions of pixels, which 

cancels random noise. 

 

S1.2. Covariates at the lake level 
 

S.1.1.1. HydroLAKES database 

General knowledge about lakes, which is crucial for the investigation of ecological processes, was obtained 

from two different data sources. Our main data source is the HydroLAKES (13), a database of 1.4 million 

global lakes with a surface area of at least 10 ha, which provides a general description as well as geographic 

attributes such as location and area of the catchment. It also includes estimates of the lake depth, water 

volume, and residence time. For lakes where no HydroLAKES information was available, we used the 

Global Lakes and Wetlands Database (GLWD) (14). This was the case for 15 of 1016 lakes. For 4 lakes, no 

lake characteristics could be retrieved and were excluded from the statistical analysis. 

 

S1.3. Covariates at the catchment level 
 

S.1.3.1. Morphological and geographical characteristics 

In order to obtain information at the catchment level, the first step is to delineate the catchments for each of 

the lakes. The HydroLAKES database mentioned above is a subset of HydroSHEDS, which provides not 

only the above-described database but also HydroBASINS, a collection of global catchments, crucial for 

hydrological modeling. 

 

HydroBASINS consists of a variety of layers for the process chain for catchment delineation, from Void-

filled elevation (DEM) to the final basins layer in different resolutions. It represents a seamless global 

coverage of hierarchically nested sub-basins.  

 

We used HydroBASINS for the catchment delineation of the lakes in our study. Depending on the size or 

location of the lakes and also considering process time, different approaches are used. We used the flow 

direction layer in a resolution of 15 arc-seconds (approximately 500m at the equator) as input data for the 

lake catchment generation. If this layer was not available, we derived the catchment by aggregation of all 

sub-basins upstream by the hierarchical procedure. Once we obtained the catchment for each lake, we used it 

as a mask to obtain the catchment-level covariates at the lake level. In particular: human population, 

precipitation, and sub-national gross domestic product. 

 

All spatial analysis is done in ArcGIS Desktop 10.5 (ESRI 2016) with standard GIS tools. For the catchment 

delineation, the extension ArcHydroTools in version 10.2 is also used with some minor adaptations in python 

scripts.  

S.1.3.2. Human population 

The world population is obtained for the year 2014 from Landscan (15), a global digital raster data in a 

resolution of approximately 1 km, which is the finest global population distribution data available today. 
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It was developed for the U.S. Department of Defense and distributed by ORNL's LandScan. We obtain the 

total number of populations in a catchment as well as the population density (number of people / catchment 

area in km2). 

S.1.3.3. Precipitation and temperature 

As data sources for the precipitation, we used the Climatologies at High resolution for the Earth Land 

Surface Areas – CHELSA in Version 1.1 (16), a global database of the downscaled model output of 

temperature and precipitation estimates at a horizontal resolution of 30 arc sec (approximately 1 km). The 

precipitation algorithm includes orographic predictors such as wind fields, valley exposition, and boundary 

layer height. The resulting monthly precipitation is extracted as time series for a given catchment for each 

month from 2001 to 2013. The trend in precipitation and the trend in temperature for each catchment are 

calculated as Spearman's rank correlation between precipitation and time and temperature and time, 

respectively. 

S.1.3.4. Sub-national gross domestic product 

The Gross domestic product (GDP) is obtained from the Gridded global datasets for Gross Domestic Product 

(17). This is a global multiannual dataset, consistent over time and space at 5 arc-min resolution 

(approximately 10 km) for the 25-year period from 1990 to 2015. The GDP per capita dataset represents the 

average gross domestic product per capita in a given administrative area unit, whereas, for the total GDP, the 

above values are multiplied by a gridded population. Both datasets, available as NetCDF files, are retrieved 

per year and aggregated for each catchment. 

 

S2. Statistical analysis 

The variables used in the statistical analysis are reflected in SI Appendix Table S1. 

  

S2.1. Structural equations modeling to determine variables associated with long-term 

trends 

We used structural equations models (SEMs) to test causal hypotheses regarding the effects of climate, 

geographic, geologic and anthropogenic variables on the mean, variance, and the trends in both the mean and 

variance of TSI over time. We implemented the SEMs using the pSEM function in the piecewiseSEM 

package in R v. 4.0.2). We generated causal hypotheses by investigating the variance-covariance matrix of 

response variables and covariates of interest: mean temperature, mean precipitation, temporal trend in 

temperature, temporal trend in precipitation, lake depth, catchment area, human density, and the mean GDP 

of people living within the lake catchment. 

 

We began our model selection procedures by testing causal hypotheses for variables explaining the mean 

TSI. We expected that the mean TSI could also be a predictor for the variance of TSI, the trend in the mean 

,and the trend in the variance of TSI. To begin, we used the structured equations to test whether the mean TSI 

was well-predicted by climate variables (temperature and precipitation), lake properties (lake depth and 

catchment area), and/or anthropogenic variables (human density and average GDP). Whenever average GDP 

was an important predictor, we tested whether it, in turn, was well-predicted by average temperature and 
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human density. Similarly, whenever human density was an important predictor, we, in turn, tested whether 

the average temperature was an important predictor of human density. Average temperature, average 

precipitation, lake depth, catchment area, human density, and average GDP were all ln(+1)-transformed.  

 

Each equation within an SEM is a linear model. We followed a progression of including missing causal links 

(identified by tests of directed separation, 'd-sep' tests), as well as removing non-significant pathways, 

repeating this procedure until all identified significant paths were included. When a path was significant, but 

we had no hypothesis regarding the causal relationship between the variables, we included the relationship as 

a correlation. We used Fischer's C statistic and the p-value to evaluate the plausibility of the models. All final 

models were plausible, with p>0.05.  

 

We started with the following model for the mean TSI: 

 

lm(TSIAvg ~ TemperatureAvg + PrecipitationAvg + LDepth + CatchArea + AverageGDP + 

HumanDensity), 

lm(AverageGDP ~ TemperatureAvg + HumanDensity), 

lm(HumanDensity ~ TemperatureAvg) 

 

Model selection resulted in the following final model for the mean TSI: 

 

lm(TSIAvg ~ TemperatureAvg + PrecipitationAvg + LDepth + CatchArea + AverageGDP), 

lm(AverageGDP ~ TemperatureAvg + HumanDensity + CatchArea), 

lm(HumanDensity ~ TemperatureAvg + PrecipitationAvg + CatchArea) 

 

We followed the same procedures to select a model explaining the variance of TSI (ln(+1)-transformed), the 

trend in the mean TSI over time, and the trend in the variance of TSI over time. The starting models are 

shown below, and the final selected models are shown in Tables S1-S4.  

 

Starting model for TSI Variance: 

  lm(TSIDetrendedMeanVar ~ TSIAvg + TemperatureAvg + PrecipitationAvg + LDepth + CatchArea + 

AverageGDP + HumanDensity,  

  lm(TSIAvg ~ TemperatureAvg + PrecipitationAvg + LDepth + CatchArea + AverageGDP,  

  lm(AverageGDP ~ TemperatureAvg + CatchArea + HumanDensity, 

  lm(HumanDensity ~ TemperatureAvg + PrecipitationAvg + CatchArea 

 

We used the trend in TSI and trends in temperature and precipitation as predictors for the trend mean and 

trend in the variance of TSI.  

 

Starting model for trend in mean TSI: 
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lm(TSIMeanTrend ~ TSIAvg + TemperatureAvg + PrecipitationAvg + TemperatureTrend + 

PrecipitationTrend + LDepth + CatchArea + AverageGDP + HumanDensity, 

  lm(TSIAvg ~ TemperatureAvg + PrecipitationAvg + LDepth + CatchArea + AverageGDP,  

lm(AverageGDP ~ TemperatureAvg + CatchArea + HumanDensity,  

lm(HumanDensity ~ TemperatureAvg + PrecipitationAvg + CatchArea 

 

Starting model for trend in variance TSI: 

 

lm(TSIDetrendedVarTrend ~ TSIAvg + TSIDetrendedMeanVar + TSIMeanTrend  + TemperatureAvg + 

PrecipitationAvg + TemperatureTrend + PrecipitationTrend + LDepth + CatchArea + AverageGDP + 

HumanDensity,  

lm(TSIMeanTrend ~ TSIAvg + TemperatureAvg + PrecipitationAvg,  

lm(TSIDetrendedMeanVar ~ TSIAvg + LDepth + CatchArea + AverageGDP,  

lm(TSIAvg ~ TemperatureAvg + PrecipitationAvg + LDepth + CatchArea + AverageGDP,  

lm(AverageGDP ~ TemperatureAvg + PrecipitationAvg + CatchArea + HumanDensity,  

lm(HumanDensity ~ TemperatureAvg + PrecipitationAvg + CatchArea 

 

The results are shown in Table S5. 

 

S3. Limitations 

 

S3.1. Spatial resolution 

There are several limitations to be considered and improved upon in the future. The first one is the spatial 

resolution of the remote sensing data. This translates into a bias towards large lakes (Fig. S1B) when 

compared to other reference lake datasets like Hydrolakes. Since lake area and depth are correlated, the 

spatial resolution limit also translates into a bias towards deep lakes (Fig. S1C), although this bias is not as 

strong as in the case of lake area.  

 

S3.2. Length of the time series 

Even though we are using the longest time series available, they might be too short to show signals of 

instability in some lakes. For this reason, we cannot describe a lake as stable, only to report the abrupt 

changes and signs of instability that we observe within the period covered in these time series. 

 

S3.3. Data gaps 

For the change-point detection algorithm, a continuous time series sampled at regular intervals is a pre-

requisite. Meris sensors work on the optical range and cannot penetrate clouds. Therefore, the number of 

gaps in the time series depends on how much cloud coverage or ice a lake experiences. Lakes in high 

latitudes are more prone to have long periods without data, particularly during winter. The Spearman's rank 
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correlation between the number of missing data points and the absolute value of latitude is 0.43, with a p-

value < 0.001. 

 

During the gap-filling routine, when the data within a moving window was scarce, the uncertainty around the 

gap-filling was such that it is increasingly difficult to find significant trends in the data. The correlation 

between the number of data gaps and the significance of the slope between two change points is -0.47, p-

value < 0.001). 

 

S3.4. Finding signatures compatible with fold bifurcations in observational data 

Pure observational data cannot conclusively determine whether a regime shift is the result of a fold 

bifurcation. Hysteresis could not be detected without knowing what the control parameter might be and 

quantifying it in situ, the control parameter might not continue to change after the shift, or the system might 

not relax faster than the sampling frequency. Therefore, we refer to the abrupt changes observed as candidate 

regime shifts and candidate tipping points. 

 

S3.5. Chosen state variable 

Lakes might experience a regime shift in another variable other than TSI within the study period, like 

turbidity or the population of specific species.   
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Fig. S1. A: Depth and area of each of the 1015 lakes. B and C show biases in lake size and depth of the lakes in this study (Meris) 

compared to a global database of lakes (Hydrolakes) with 1.4 million lakes. The spatial resolution of the Meris sensor constrains 

data acquisition to lakes larger than 6Km2. This also results in a slight bias in average lake depth. 
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Fig. S2. Global lake productivity and its temporal trend. Each dot represents one of the 1015 lakes, and the color represents their 

mean productivity, measured as trophic state index (A), and the trend in productivity, measured as the trend in mean TSI, 

quantified as the Spearman's rank correlation between mean TSI and time (B). Non-significant trends are shown in grey. Positive 

trends are shown in different shades of red, while negative trends are blue. 18.4% of the lakes show positive trends in TSI, while 

16.9% of lakes show negative trends. The fraction of lakes with non-significant trends was 64.7%. In both maps, the insert shows 

the histogram of significant trends.   
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Fig. S3. Sensitivity analysis. This figure shows that the frequency of candidate regime shifts from low to high TSI is increasing 

over time regardless of the number of bins in which we partition the time series. Although not for every partition, the correlation is 

significant (Spearman's rank correlation p-val < 0.05, orange bars), the pattern is consistent. All correlation coefficients are positive 

and similar in magnitude. Moreover, this can also be understood as that the time between two candidate regime shifts is decreasing 

over time. Such correlation (time between candidate regime shifts in the dataset vs. time) would not require a sensitivity analysis. 

We find that correlation to be significant (p-val < 0.01) Spearman's rank correlation of -0.17, confirming that, over the length of the 

time series, candidate regime shifts from low to high TSI have become more frequent over time. The temporal trends in the total 

number of candidate regime shifts (independent of shift direction), and candidate regime shifts from high to low TSI are shown in 

Fig. S4. 
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Fig. S4. Panels A and C are equivalent to figure 2C in the main text but for all candidate regime shifts (A) and for lakes that go 

from high to low TSI as a result of the shift (C). Panels B and D are the sensitivity analysis equivalent to Figure S3. It is clear that 

the positive (although not significant) trend in the total number of candidate regime shifts is driven by the increase in candidate 

regime shifts from low to high TSI shown in figure S3. No temporal trends were observed in the number of candidate tipping 

points. 
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Fig. S5. Detrending and moving average. (A) shows the TSI time series of a lake, where the data in red represents the data of a 

certain month (September), and the line shows the linear fit of the data from that particular month. (B) shows the de-trended time 

series. The solid red line shows the mean de-trended TSI inside a 1-year moving window. (D) Shows the Variance in TSI inside a 

1-year moving window (solid red line). The dotted lines show the 95% confidence intervals. The lake shown in this example is 

lake Toshka. 
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Fig. S6. Candidate regime shifts and tipping point abruptness. (A) Histogram of abruptness values for the change points classified 

as candidate regime shifts (blue) and candidate tipping points (orange). (B) Relationship between lake depth and abruptness. Blue 

circles represent candidate regime shifts, while orange circles represent candidate tipping points.  
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Table S1. List of variables and covariates.  
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Table S2: Best model to explain the probability of a lake experiencing a candidate regime shift in TSI (RSTSI is a binary vector 

indicating whether a lake has experienced a candidate regime shift, 1, or not, 0). After model selection, the final binomial model 

takes the following form: 

 

 

 

 

 

 

Table S3: Best model to explain the coefficient of variation in a lake. After model selection, the final model takes the following 

form: 

 

 

 

 

 

 

Table S4: Best model to explain the probability of a lake experiencing a candidate tipping point in TSI (TPTSI is a binary vector 

indicating whether a lake has experienced a candidate tipping point, 1, or not, 0). After model selection, the final binomial model 

takes the following form: 
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Table S5: 

 

 

 

 

 

 

 

  



 

 

17 

 

SI References 

 
1.  M. Rast, J. L. Bezy, S. Bruzzi, The ESA Medium Resolution Imaging Spectrometer MERIS a review 

of the instrument and its mission. Int. J. Remote Sens. 20, 1681–1702 (1999). 

2.  D. Odermatt, O. Danne, P. Philipson, C. Brockmann, Diversity II water quality parameters from 

ENVISAT (2002–2012): a new global information source for lakes. Earth Syst. Sci. Data 10, 1527–

1549 (2018). 

3.  S. Simis, K. Stelzer, D. Müller, “Algorithm Theoretical Basis Document Lake Water Quality 300m 

and 1km Products” (2018). 

4.  K. Stelzer, S. Simis, D. Müller, “Product User Manual Lake Water Quality 300m and 1km Products” 

(2018). 

5.  T. S. Moore, M. D. Dowell, S. Bradt, A. Ruiz Verdu, An optical water type framework for selecting 

and blending retrievals from bio-optical algorithms in lakes and coastal waters. Remote Sens. Environ. 

143, 97–111 (2014). 

6.  E. Spyrakos, et al., Optical types of inland and coastal waters. Limnol. Oceanogr. 63, 846–870 (2018). 

7.  M. Zühlke, et al., SNAP (Sentinel Application Platform) and the ESA Sentinel 3 Toolbox in Proc. 

Sentinel-3 for Science Workshop, ESA Special Publication., L. Ouwehand, Ed. (ESA, 2015), p. 4. 

8.  R. E. Carlson, A trophic state index for lakes. Limnol. Oceanogr. 22, 361–369 (1977). 

9.  A. A. Gilerson, et al., Algorithms for remote estimation of chlorophyll-a in coastal and inland waters 

using red and near infrared bands. Opt. Express 18, 24109–24125 (2010). 

10.  S. Mishra, D. R. Mishra, Z. Lee, Bio-Optical Inversion in Highly Turbid and Cyanobacteria-

Dominated Waters. IEEE Trans. Geosci. Remote Sens. 52, 375–388 (2014). 

11.  H. J. Gons, Effect of a waveband shift on chlorophyll retrieval from MERIS imagery of inland and 

coastal waters. J. Plankton Res. 27, 125–127 (2004). 

12.  C. Neil, E. Spyrakos, P. D. Hunter, A. N. Tyler, A global approach for chlorophyll-a retrieval across 

optically complex inland waters based on optical water types. Remote Sens. Environ. 229, 159–178 

(2019). 

13.  M. L. Messager, B. Lehner, G. Grill, I. Nedeva, O. Schmitt, Estimating the volume and age of water 

stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016). 

14.  B. Lehner, P. Döll, Development and validation of a global database of lakes, reservoirs and wetlands. 

J. Hydrol. 296, 1–22 (2004). 

15.  E. A. Bright, A. N. Rose, M. L. Urban, LandScan 2015 (2016). 

16.  D. N. Karger, et al., Climatologies at high resolution for the earth's land surface areas. Sci. Data 4, 

170122 (2017). 

17.  M. Kummu, M. Taka, J. H. A. Guillaume, Gridded global datasets for Gross Domestic Product and 

Human Development Index over 1990–2015. Sci. Data 5, 180004 (2018). 

18.  S. R. Carpenter, Lake geometry: Implications for production and sediment accretion rates. J. Theor. 

Biol. 105, 273–286 (1983). 


